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We report an investigation of the neural processes involved in the processing of faces and objects of brain-lesioned patient PS, a well-
documented case of pure acquired prosopagnosia. We gathered a substantial dataset of high-density electrophysiological recordings
from both PS and neurotypicals. Using representational similarity analysis, we produced time-resolved brain representations in a
format that facilitates direct comparisons across time points, different individuals, and computational models. To understand how
the lesions in PS’s ventral stream affect the temporal evolution of her brain representations, we computed the temporal generalization
of her brain representations. We uncovered that PS’s early brain representations exhibit an unusual similarity to later representations,
implying an excessive generalization of early visual patterns. To reveal the underlying computational deficits, we correlated PS’ brain
representations with those of deep neural networks (DNN). We found that the computations underlying PS’ brain activity bore a
closer resemblance to early layers of a visual DNN than those of controls. However, the brain representations in neurotypicals became
more akin to those of the later layers of the model compared to PS. We confirmed PS’s deficits in high-level brain representations by

demonstrating that her brain representations exhibited less similarity with those of a DNN of semantics.
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Introduction

The human brain is equipped with sophisticated machinery opti-
mized to quickly and effectively recognize faces in a series of
computations unfolding within tens of milliseconds. A dramatic
contrast to this typically efficient process has been revealed
in brain-lesioned patients with an inability to recognize faces,
individuals called acquired prosopagnosics (Bodamer 1947). Find-
ings from these patients have refined the functional role and
the distributed nature of the face-sensitive brain regions in the
ventral stream, such as the fusiform gyrus (fusiform face area
[FFA]; Bobes et al. 2003; Kanwisher et al. 1997) and the lateral
portion of the inferior occipital gyrus (Occipital Face Area, OFA;
Dricot et al. 2008; Gauthier et al. 2000; Rossion et al. 2003; Sorger
et al. 2007). This literature has generally contributed to the idea
that specialized and category-selective neural modules are nec-
essary for functional aspects of face processing (Cohen et al.
2019). Brain imaging findings from individuals born with deficits
in face recognition (developmental prosopagnosics; (McConachie
1976; Avidan et al. 2005; Kaltwasser et al. 2014; Rosenthal et al.
2017; Jiahui et al. 2018) have revealed finer-grained functional
neural differences in the processes associated with deficits in face
recognition (Avidan et al. 2014; Rosenthal et al. 2017; Jiahui et al.
2018; Zhao et al. 2018). Overall, the cumulation of these neu-
ropsychological, neuroanatomical, and functional components
of prosopagnosia (Busigny et al. 2010; Dricot et al. 2008; B. C.
Duchaine and Nakayama 2006; Rossion 2018; Rossion et al. 2003)
has significantly contributed to neural models of face perception

in the last two decades (B. Duchaine and Yovel 2015; Haxby et al.
2000; White and Mike Burton 2022). Yet, little is known on the
nature of face representations of those patients (e.g. Caldara et al.
2005; Fiset et al. 2017), and next to nothing is known on the nature
of brain dynamics and neural computations affected in prosopag-
nosia. Here, we report an investigation of the neural computations
involved in the processing of faces and objects of patient PS, a
well-documented case of pure acquired prosopagnosia (Rossion
et al. 2003; Sorger et al. 2007), using Representational Similarity
Analysis (RSA; Charest et al. 2014; Kriegeskorte, Mur, and Bandet-
tini, 2008; Kriegeskorte and Kievit 2013; Nili et al. 2014) applied to
brain imaging and computational models.

Patient PSis a right-handed woman who suffered a closed head
injury in 1992, resulting in extensive bilateral occipitotemporal
lesions that encompasses the right occipital face area (OFA), left
FFA, and a small region of the right middle temporal gyrus (Sorger
et al. 2007; Dricot et al. 2008). She stands out as one of the most
extensively studied cases of acquired prosopagnosia, with over 32
scientific publications dedicated to her in the past two decades,
as highlighted in recent reviews by Rossion (2022a, 2022b). The
prominence of this case stems from the relatively focal nature of
herlesionsin the face network and the highly specific impairment
she experiences in face identification (Busigny et al. 2010). Despite
the comprehensive examination of her condition, including its
impact on various perceptual mechanisms like holistic processes
and the visual content of face representations (Caldara et al.
2005; Ramon et al. 2016; Fiset et al. 2017), there has been no
direct attempt, to the best of our knowledge, to characterize the
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neural computations characteristic of her deficits. The assess-
ment of the nature and extent of brain computations affected in
prosopagnosia has traditionally relied on examining the temporal
dynamics and face-selectivity of neural activity. For instance,
event-related potential differences occurring later in processing
have been viewed as indicative of higher-level processes than
those occurring earlier (Eimer et al. 2012; Bentin and Deouell 2000;
Herzmann et al. 2004; Gosling and Eimer 2011; Alonso Prieto et al.
2011; Simon et al. 2011; Tanaka et al. 2006; Liu-Shuang et al. 2016;
Wiese et al. 2019).

Associations have been found between prosopagnosia and
well-established neural markers of face processing, such as the
face-sensitive N170 (Bentin et al. 1996) and face-selective fMRI
activation (Towler and Eimer 2012; Bobes et al. 2003; Alonso
Prieto et al. 2011; Gao et al. 2019). It is worth noting that despite
her significant lesions and difficulties in face identification, PS
still exhibits typical face-selectivity in spared regions of the right
hemisphere, including the presence of a right FFA (Rossion et al.
2003; Gao et al. 2019), as well as a typical N170 component in
the right hemisphere, but not in the left (Alonso-Prieto, 2011;
Bobes et al. 2003; Dalrymple et al. 2011). Similarly, developmental
prosopagnosics demonstrate typical activation in the core
posterior regions of the face-processing system, including the
OFA and FFA (Avidan et al. 2014). Recent advances in experimental
techniques, such as fast periodic visual stimulation (Liu-Shuang
et al. 2016b), have shed light on the crucial deficits in neural
face individuation observed in PS. However, characterizing
the underlying computations involved in these neural and
perceptual processes remains a difficult endeavor. Describing
neural computations is inherently challenging due to signal-
to-noise ratio (SNR) issues, which are even more pronounced
when recording brain activity from patients with brain lesions
(Liu-Shuanget al. 2016a). Brain damage can substantially alter the
flow of brain activity compared to typical observers, potentially
distorting event-related potential components (Alonso Prieto et al.
2011) and requiring additional repetitions of conditions. Moreover,
relying solely on temporal evidence has limitations as it only
partially reveals the nature of the computations that the brain
depends on (Lamme and Roelfsema, 2000; McDermott et al. 2002).
Individuals performing different neural computations on faces
may very well exhibit identical activity at a given latency, as
indicated by univariate event-related potentials.

In recent years, innovative techniques have gained popular-
ity for exploring the nature of brain representations by linking
functional and multivariate brain activity with computational
models (Dwivedi et al. 2021; di Oleggio Castello et al. 2021; Popham
et al. 2021; Kriegeskorte and Diedrichsen 2016; Doerig et al. 2022;
Faghel-Soubeyrand et al. 2024). The previously mentioned SNR
concerns may explain why most studies on prosopagnosia have
traditionally relied on a limited set of stimuli conditions, block-
designs, and univariate methods such as averaging and subtrac-
tion. Although these methods are associated with relatively good
statistical power, they have limited our understanding of the brain
computations that underlie prosopagnosia. To gain a more com-
prehensive understanding, researchers have begun investigating
brain processing using condition-rich designs (Allen et al. 2022;
Charest et al. 2014a; Kriegeskorte and Kievit 2013; Naselaris et al.
2021). These approaches emphasize examining diverse models on
a whole-brain basis, thus providing a broader description of the
underlying brain mechanisms (Dwivedi et al. 2021; Kriegeskorte
and Diedrichsen, 2019; Popham et al. 2021).

Here, we adopted a data-driven approach. We recorded the
brain activity of patient PS and neurotypical controls in response

to images from several categories. Using a well-established mul-
tivariate technique, RSA (Kriegeskorte, Mur, and Bandettini, 2008),
we generated functional brain representations in a versatile for-
mat that enables direct comparisons across time, individuals with
differing neuroanatomical structures, and computational models
(Golarai et al. 2015; Popal et al. 2019). To understand how the
lesions in PS’s ventral stream affect the temporal evolution of
these brain representations, we conducted a comparison of the
temporal generalization of these representational geometries in
both PS and a control group. Additionally, to gain insights into
the specific computational deficits in PS’s brain, we conducted
a comparative analysis of her brain representations with those
generated by artificial models designed to perform various types
of computations. These models consisted in deep neural networks
(DNN) specializing in vision and in semantics, providing a valuable
perspective on the neural computations involved in PS’s deficits
(see Faghel-Soubeyrand et al. 2024).

Materials and methods
Patient PS and neurotypical participants

A total of 20 participants were recruited for this study. The first
group consisted of 19 neurotypicals individuals that included 15
young controls (9 female, Mage =22.9 years old) as well as four
age-matched controls (three female, Mage =67.5). This sample size
was chosen according to the effect sizes described in previous
multivariate pattern analysis studies (Carlson et al. 2013; Cichy
etal.2014; Hebart et al. 2018; Faghel et al. 2022), as well as previous
studies on prosopagnosia (Humphreys et al. 2007; Richoz et al.
2015; Liu-Shuang et al. 2016; Gao et al. 2019). Data from 10 of
these young controls (#1-10) have been reported in a previous
study (Faghel-Soubeyrand et al. 2024). One participant from the
age-matched group (#2) was rejected due to faulty EEG recordings
and poor behavioral performance during the one-back task and
CFMT+. This study was approved by the Ethics and Research
Committee of the University of Birmingham, The University of Fri-
bourg, and informed consent was obtained from all participants.

PS’s case report

Patient PS was born in 1950 and is a pure case of acquired
prosopagnosia. She was hit by the side mirror of a London’s
bus in 1992 while crossing the road. This closed head injury
led to major lesions in the left middle fusiform gyrus, where
the left Fusiform Face Area (IFFA) is typically located, and in the
right inferior occipital gyrus, which typically locates the right
Occipital Face Area (rOFA; see Gao et al. 2019) for converging fMRI
evidence). Both regions play a critical functional role within the
face cortical network (Rossion 2022a, 2022b). She also reported
minor damages in the right middle temporal gyrus and left
posterior cerebellum (for an exhaustive anatomical description
and an illustration of her brain damages (see Sorger et al. 2007,
Figs. 2 and 3). Patient PS is a very well-documented and described
case of acquired prosopagnosia. She has been extensively studied
over the last 20 years, leading to impactful scientific contributions
that significantly enriched the theoretical models on human face
perception (Rossion 2008, 2014; for a complete case report see,
Rossion 20223, 2022b; Rossion et al. 2003).

Patient PS recovered remarkably well from initially signifi-
cant cognitive deficits with the support of medical treatment
and neuropsychological rehabilitation. A couple of months after
her injury she performed within the normal range at different
non-visual tasks for which she was slightly impaired after the
accident (e.g. calculation, short and long-term memory, visual
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imagery). She even resumed working as a kindergarten teacher
only 2 years after her traumatic accident. Yet, her fine-grained
visual discrimination abilities remained slower compared to con-
trols, and she also presented reduced contrast sensitivity to high
spatial frequency information (>22 cycles/degree) and a pro-
found prosopagnosia with massively impaired face recognition
abilities (Rossion et al. 2003). The patient complains of a severe
difficulty at recognizing faces, including the ones of her kinder-
garten children, close relatives (husband, children, friends), as
well as her own face. PS can correctly categorize (and draw)
faces as a unique visual object and discriminate faces from
other non-face objects or scenes, even when the images are
briefly presented (Schiltz et al. 2006). She shows no difficulty
at object recognition, even for subordinate-level discriminations
(Rossion et al. 2003; Schiltz et al. 2006). Patient PS is perfect
at all tests from the Birmingham Object Recognition Battery
(BORB—(Riddoch and Humphreys 2022) showing preserved pro-
cessing of low-level aspects of visual information (i.e. matching of
basic elementary features), intact object matching from different
viewpoints, and normal performance for object naming (Rossion
et al. 2003; Table 1). Her reading abilities are also well preserved
although slightly slowed down, her visual acuity (0.8 bilaterally) is
within the normal range, and her visual field almost intact apart
from a small left paracentral scotoma. As reported by Rossion
et al. (2003), she is highly impaired on the Benton Face Matching
Test (BFRT—(Benton and Van Allen 1972) scoring 27/54 (percentile
1). She performs also poorly on the Warrington Recognition Mem-
ory Test (WRMT—(Warrington and Shallice 1984), scoring 18/25
(percentile 3) a performance that characterizes her as impaired
compared to controls. Over the years, patient PS developed strate-
gles to infer a person’s identity by relying on external cues such
as haircut, clothes, beard, glasses, gait, posture, or a person'’s
voice. Moreover, as revealed by the Bubbles response classification
technique, patient PS uses suboptimal diagnostic information to
recognize familiar faces, relying on the lower part of the face
(i.e. the mouth region and external contours) instead of the most
informative eye area (Caldara et al. 2005). A similar bias towards
the mouth has been observed for the recognition of static facial
expressions (Fiset et al. 2017) for which she is strongly impaired.
Her ability to recognize the dynamic versions of the same facial
expressions is nevertheless preserved (Richoz et al. 2015). Overall,
PS is a very cooperative patient with extraordinarily preserved
cognitive functions, sensory and motor skills and without any
attentional deficits. She therefore represents an exemplary case
to investigate the functional models of typical face processing.

Behavioral tasks
Cambridge face memory test +

All participants were administered the CFMT long-form, or
CFMT+ (Russell et al. 2009). In the CFMT+, participants are
required to memorize a series of face identities, and to sub-
sequently identify the newly learned faces among three faces.
It includes a total of 102 trials of increasing difficulty. The
duration of this test is about 15 min. EEG was not recorded while
participants completed this test.

One-back task

The stimuli used in the main experiment consisted of 49 images
of faces, animals (e.g. giraffe, monkey, puppy), plants, objects
(e.g. car, computer monitor, flower, banana), and scenes (e.g. city
landscape, kitchen, bedroom). The 24 faces (eight identities (four
females) and three expressions: neutral, happy, and fearful) were

Faghel-Soubeyrand etal. | 3

taken from the Radboud Face dataset (Langner et al. 2010). For fur-
ther details on stimulus processing steps, see (Faghel-Soubeyrand
et al. 2024). In total, ~8 exemplars of each category (e.g. eight
animals, eight objects, nine scenes, eight joyful/fearful/neutral
faces) were presented to the participants during the EEG task.

These stimuli were presented during a one-back task where
we measured high-density electroencephalographic (EEG) activity
(Fig. 1b,c). Participants performed ~3200 trials in two recording
sessions, which were separated by at least 1 day and by a max-
imum of 2 weeks. Participants were asked to press a computer
keyboard key only on trials where the image was identical to the
previous one (repetitions occurred with a 0.1 probability). They
were asked to respond as quickly and accurately as possible. A
trial unraveled as follows: a white fixation dot was presented on
a gray background for 500 ms (with a jitter of £50 ms); followed
by a stimulus presented on a gray background for 600 ms; and,
finally, by a white fixation dot on a gray background for 500 ms.
Participants had a maximum of 1100 ms following stimulus onset
to respond.

Electroencephalography recording and
preprocessing

High-density electroencephalographic data were continuously
recorded at a sampling rate of 1024 Hz using a 128-channel
BioSemi ActiveTwvo headset (Biosemi B.V., Amsterdam, Nether-
lands). Electrodes’ impedance was kept below 20 uV. Data were
collected at the University of Fribourg. Data were preprocessed
using FieldTrip (Oostenveld et al. 2011) and in-house MATLAB
code: continuous raw signal was first re-referenced relative to Al
(Cz), filtered with a band-pass filter [.01-80 Hz], segmented into
trial epochs from —200 ms to 1100 ms relative to image onset, and
down-sampled at 256 Hz. These EEG recordings were completed
during the one-back task only.

Representational similarity analysis
Brain representational dissimilarity matrices

For every participant, we trained a Fisher linear discriminant
(5-fold cross-validation, five repetitions; Treder 2020) to distin-
guish pairs of stimuli from every 4 ms intervals of EEG response
to these stimuli from —200 to 800 ms after stimulus onset (Cichy
and Oliva 2020; Graumann et al. 2022). All 128 channels served
as features in these classifiers. Cross-validated area under the
curve (AUC) served as pairwise classification dissimilarity metric.
By repeating this process for all possible pairs (1176 for our
49 stimuli), we obtained a representational dissimilarity matrix
(RDM,; Fig. 1c. see also Supplementary Fig. 1b).

Time generalization

We systematically characterized the differences in representa-
tional trajectories between PS and controls using a procedure
similar to temporal generalization (King and Dehaene 2014).
Specifically, we cross-correlated the RDMs across all time points
afterimage onsets, creating a time x time temporal generalization
matrix (TGM), indicating how similar is an RDM at a specific time
window to other RDMs at other time windows, and compared this
TGM between PS and controls using Howell-Crawford t-tests (see
Fig. 1d, and Fig. 2).

Brain and deep neural networks comparisons

We compared our participants’ brain representations to those
from visual and caption deep neural networks (DNN) using RSA
(Charest et al. 2014; Kriegeskorte, Mur, and Bandettini, 2008;
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Fig. 1. Overview of the experiment. a) the histogram shows the Cambridge face memory test long-form (CFMT+, (Russell et al. 2009) scores for PS, our
typical recognizers (dark gray bars), and an additional 332 neurotypical observers from three independent studies for comparison (Faghel-Soubeyrand
et al. 2019; Tardif et al. 2019; Fysh et al. 2020). b) Participants were engaged in a one-back task while their brain activity was recorded with high-
density electroencephalography. The stimuli included objects from various categories, such as faces, objects, and scenes. Note that the face drawings
shown here are anonymized representations used as substitutes for the actual face stimuli presented to our participants. ¢) Representational similarity
analyses consisted in constructing brain representational dissimilarity matrices (RDMs) by comparing representational patterns (as characterized by
EEG topographies) for all pairwise comparisons of stimuli, independently for each time-point and participants. Specifically, RDMs were constructed using
cross-validated decoding performance between the EEG topographies at 4 ms intervals, providing a dynamic account of representational geometries
unfolding after stimulus onset. d) To evaluate the temporal evolution of brain representations, a temporal generalization matrix was computed for each
participant. This involved calculating all pairwise correlations between a participant’s time-resolved brain RDMs. A specific time-resolved brain RDM is

considered to “generalize” to later time-resolved brain RDMs when it exhibits a positive correlation with them.

Kriegeskorte, Mur, Ruff, et al. 2008; Kriegeskorte and Kievit,
8/2013).

Visual convolutional neural networks RDMs. We used AlexNet
(Krizhevsky et al. 2012) trained on ecoset, an ecologically valid
image training dataset with faces, objects, etc. (Mehrer et al. 2021)
one model of the visual computations along the ventral stream
(Mehrer et al. 2021). We also used two other visual DNNs: AlexNet
trained on ImageNet (Krizhevsky et al. 2012) and VGG-Face, a
model specialized for faces (Parkhi et al. 2015). In all cases, our
49 stimuli were input to the DNN, and layer-wise RDMs were
constructed comparing the unit activation patterns for each pair
of images using Pearson correlations. These DNN process visual
features of gradually higher complexity and abstraction along
their layers (Glclu and van Gerven 2015), from low-level (i.e.

orientation, edges in shallow layers) to high-level features (e.g.
objects and object parts in deeper layers).

Caption-level semantic RDM. We also used the caption-level
semantic model derived by (Faghel-Soubeyrand et al. 2024). They
asked five participants to provide a sentence caption describing
each stimulus (e.g. “a city seen from the other side of the forest”),
including those of faces (e.g. “a neutral female face”, “an unsure
man’s face”), using the Meadows online platform (www.meadows-
research.com). The sentence captions were fed as inputs in
Google’s universal sentence encoder (GUSE; (Cer et al. 2018)
resulting in a sentence embedding with 512 dimensions for each
of our 49 stimuli. GUSE was trained to predict semantic textual
similarity from human judgments, and its embeddings generalize
to an array of other semantic judgment tasks (Cer et al. 2018).
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Fig. 2. Temporal generalization of EEG representations across time in PS and controls. a) Temporal generalization over all pairwise stimulus comparisons.
To assess the temporal evolution of brain representations, we computed a temporal generalization matrix for each participant. This process involved
calculating pairwise correlations between time-resolved brain representational dissimilarity matrices (RDMs). The leftmost column displays the mean
temporal generalization matrix of control participants. The yellowish square in the upper right section of the matrix indicates temporal generalization
within the N170 time window. The central column illustrates the temporal generalization matrix of PS, which resembles that of the controls but is
associated with earlier brain RDMs. This is most evident in the rightmost column, representing the difference between PS’s and controls’ temporal
generalization matrices. Statistically significant regions in this contrast matrix are outlined in black (P < 0.05, uncorrected), with only positive differences
reaching the threshold. b) Similar to a), temporal generalization matrices were computed, but this time specifically for a subset of time-resolved brain
RDMs comparing pairs of face stimuli. ¢) Similar to a), temporal generalization matrices were computed, but this time specifically for a subset of time-
resolved brain RDMs comparing pairs of face and nonface stimuli. d) Similar to a), temporal generalization matrices were computed, but this time
specifically for a subset of time-resolved brain RDMs comparing pairs of nonface stimuli.

Faghel-Soubeyrand et al. (2024) then computed the dissimilarities between the five captioners (r range across participants=0.65-
(cosine distances) between the sentence embeddings across .71, mean r=0.6823), and in turn, the resulting RDMs showed
all pairs of captions, resulting in a caption-level semantic an average RDM spearman correlation between participants
RDM for each of their participants. The GUSE embeddings of r=0.7116. Therefore, we used the average RDM for our
forming the basis for the RDMs had good levels of agreement analyses.
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Fig. 3. Comparison of brain representations with those of artificial neural networks of visual and semantic processing. a) Partial spearman correlation
between brain RDMs and ecoset-trained AlexNet RDMs (removing shared correlation between brain and semantic model) is shown for PS (pink curve)
and controls (gray curve). Each column shows different layer RDMs in ascending order from left to right. See Supplementary Fig. 2 for the same analysis
on all the deep neural networks (DNN) layers. We found lower similarity of visual computations within the brain of PS compared to controls in layers 6
and 7 (black dots indicate significant contrasts in favor of controls, Howell-Crawford modified t-tests, P < 0.05; uncorrected), with differences peaking
in higher-level DNN layer 7. We observed the opposite in layers 1 to 3 and, to a lesser extent in layer 5, at early time points (red dots indicate significant
contrasts in favor of PS, Howell-Crawford modified t-tests, P < 0.05; uncorrected). Similar results were observed when comparing brains and DNN models
without removing the shared information between brains and the semantic (caption-level) model (Supplementary Fig. 4). See Supplementary Fig. 3a
and b for partial Spearman correlations for AlexNet trained on ImageNet and of VGGFace, respectively. b) Partial Spearman correlation with RDMs of
the semantic model (excluding shared information between brain and AlexNet) was significantly lower in the brain of PS compared to controls (cyan
curve; black dots indicate significant contrasts, P < 0.05; uncorrected). Similar results were observed when comparing brains and DNN models without
removing the shared information between brains and the semantic (caption-level) model (see Supplementary Fig. 5). The shaded areas of all curves
represent the standard error for the controls.

Representational dissimilarity matrices comparisons

We compared our participants’ brain RDMs to those from the
vision (Fig. 3a, see also Supplementary Fig. 2) and caption-level
semantic description (Fig. 3b) models described in the pre-
vious section using partial Spearman correlations (also see
Supplementary Fig. 3 for comparisons with additional visual
models). We accounted for the correlation between semantic
and categorical models by partialling out the correlation
with the last layer of AlexNet, and vice-versa. Specifically,
for the brain-AlexNet correlations, each layer-brain RDM was
correlated using partial Spearman correlation, partialling out
the semantic RDM variance. For the brain-semantic model
correlations, each semantic-brain RDM correlation was also
done using partial Spearman correlation, partialling out the
last layer of AlexNet RDM. Simple Spearman correlations
(unconstrained on a third variable) were also computed and
shown in supplementary materials (Supplementary Figs. 4
and 5).

Group comparison and inferential statistics

All contrasts between PS and neurotypical controls were
computed using Crawford-Howell modified t-tests for case-
controls comparisons (Crawford and Howell 1998; Crawford and
Garthwaite 2012). Non-parametric tests in single case studies
have been demonstrated to be less reliable considering that
there is no equivalent for non-parametric statistics that are
reliable (Crawford et al. 2006). All time-resolved contrasts were
computed from 0 to 800 ms after image-onset. To assess statistical
significance in cases where we do not compare PS and controls we
used nonparametric permutation tests (e.g. Nichols and Holmes
2002; Li et al. 2022).

Results
One-back task

Accuracies did not differ between age-matched and young con-
trols subgroups either for face stimuli (t(16) =—0.3099, P =0.761;
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t(16)=-0.9607, P =0.3510) or non-face stimuli (t(16)=1.2925,
P =0.215; t(16)=—.09704, P =0.3463). Therefore, their data were
aggregated into a single neurotypical control group.

Face-specific behavioral index

To assess the face-specific performance of PS and controls in a
single individual score, we combined performance in the one-
back task accuracies and response times of face and non-face
trials using Principal Component Analysis (PCA). Specifically,
face-specific performance in the one-back tasks was computed
as a face vs. non-face performance contrast score ([face—non-
face]/[face + non-face]) separately for accuracy and RTs, for
each participant. We used PCA to extract projections explaining
variance across these two variables (Calder et al. 2001; Calder
and Young 2005). The first component, which explained 83.86%
of the variance in performance across participants, is henceforth
referred to as the face-specific performance score. PS significantly
differed from neurotypical controls on this score (t(17)=-7.1571,
P =1.6053e-06; see Supplementary Fig. 1a), indicating typical face-
specific behavioral deficits in this patient.

Cambridge face memory test long-form

Within the control participants, CFMT+ scores did not differ
between aged-matched and non-aged-matched control groups
(t(16) =—0.8058, P =0.4322). Their data were aggregated into a
single control group. PS significantly differed from controls on
this standard face identification ability score (t(17)=-2.7623,
P =0.0133).

Stability of neural code across time

A predominant assumption in cognitive neuroscience is that tem-
porally early brain signal refers to low-level computations while
later brain signal refers to higher-level computations (e.g. DiCarlo
et al. 2012; Wiese et al. 2019). To investigate whether PS presents
abnormal profiles of computations related to the lesioned cortical
sites, we performed a variant of temporal generalization analyses
(King and Dehaene 2014) using cross-correlated EEG RDMs across
time. Specifically, correlation of EEG-RDMs across all time points
after image onsets creates a (symmetric) time x time TGM. This
symmetric temporal generalization matrix (TGM) indicates how
representational geometries elicited at different time-points are
similar (see Fig. 1d). We compared this TGM between PS and
controls using Howell-Crawford t-tests (see Fig. 2). If the lesioned
cortical sites perform critical computations on brain signals fed
forward from early visual areas, we should observe excessive
generalization of the representational geometries encoded in
early time-points after stimulus onset for PS. Indeed, compared
to controls, PS showed significantly higher correlation between
her early representations (i.e. ~80-100 ms, ie. around P100
(Luck et al. 1990) and late representations from around 230 ms to
around 900 ms after image onset, as shown by the long trail of
significant contrasts (Fig. 2a; black outline, P < 0.05; uncorrected).
A similar and larger cluster was found between PS’s mid-latency
representations around 300 ms, which generalized more than
controls to late representations from ~400 ms until around
900 ms. Overall, thus, these results indicate that PS has more
stable/less dynamic neural representations, with late EEG activity
reflecting more similar representations to early EEG activity
compared to neurotypical controls. We found essentially the same
pattern of results when the TGM was computed on the face vs.
face stimuli condition (Fig. 2b) and on face vs. non-face stimuli
condition (Fig. 2c) but not on the non-face vs. non-face stimuli
condition (Fig. 2d).
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Altogether our temporal generalization results indicate that
PS shows relatively less transformations in neural computations
from early to late stages of her visual processing stream, espe-
cially for face stimuli (Cichy and Oliva 2020).

Similarity with visual and semantic
computational models

Our results suggest that the lesions in specific high-level cortical
sites in PS contribute to an excessive temporal generalization of
the face representations encoded in early time-points. Late stage
processing must rely on inputs fed forward, and if those inputs
come from early low-level processes, the high-level abstract repre-
sentation relies on features that are weaker given the task at hand.
But temporal generalization results do not explicitly reveal which
kinds of computations may be impaired as a result of critical
cortical sites being lesioned. To better understand the differ-
ences in computational trajectories between PS and controls, we
compared brain RDMs to state-of-the-art computational models
of vision and caption-level semantics. We assessed visual brain
computations in PS and neurotypical controls by comparing their
brain RDMs to those of the AlexNet-ecoset deep neural networks
(DNNs).

The time courses of the partial Spearman correlation between
brain RDMs and DNN layers 3, 5, and 7 (removing shared
correlation between brain and semantic model) for PS and
controls are shown in Fig. 3a (the partial Spearman correlations
for all eight layers are shown in Supplementary Figs. 2 and
4, including individual control traces). Direct contrasts of PS’
correlation time courses with those of controls indicated reduced
similarity with the RDMs of the visual DNN’s final layers (P < 0.05;
uncorrected; layer 5: ~130-150 ms, layer 6: ~310-400 and 700-
800 ms, layer 7: ~300-500 and 700-800 ms). These significant
contrasts were present relatively late after image onset, and
peaked at layer 7, which represent a higher proportion of
high-level visual features (e.g. whole objects and object parts,
(Giclt and van Gerven 2015; Long et al. 2018). Interestingly,
however, while similarity to these late visual representations
were reduced in PS, similarity to earlier visual representations
of the DNN (layers 1-5) were increased earlier on in this patient
(see Supplementary Fig. 2, first two panels, P < 0.05; uncorrected,
layer 1: 72-100 ms, layers 2-4: 72-84 ms, layer 5: 72-80 ms). This
indicates that PS shows reduced similarity with high-level visual
representations late after image onset and increased similarity
with early visual representations early after image onset. We
further tested the similarity to visual DNN representations of
PS and controls by comparing them with similar convolutional
networks trained either on faces-only (VGGface; (Parkhi et al.
2015); see Supplementary Fig. 3a) or objects-only (imagenet-
trained AlexNet; (Krizhevsky et al. 2012); see Supplementary
Fig. 3b). Overall this confirmed the impaired representational
similarity to visual DNNs in the brain of PS in late stages of visual
processing. However, the better alignment observed for PS early
after image onset with early layers of ANNs was not observed
in VGGface nor in AlexNet-imagenet. This discrepancy could
potentially be explained by the images used in training these ANN
models. VGGFace was trained with thousands of face identities in
~1,000,000 images. AlexNet-imagenet was trained with imagenet
(Deng et al. 2009) which has been criticized for its lack of real
world distribution of objects and categories (Beyer et al. 2020). The
AlexNet-ecoset model was trained on a well-controlled diversified
set of images aiming to improve the model’s ecological validity
(Mehrer et al. 2021).
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To reveal whether semantic computations (Barton et al. 2009;
Schweinberger and Neumann 2016) could be affected in the
brain of PS, we used a deep averaging network (Google Universal
Sentence Encoder, GUSE (Cer et al. 2018)) to transform human-
derived captions of our stimuli (e.g. “a city seen from the other side
of the forest”) into semantic embeddings (points in a semantic
space; for more details see Faghel-Soubeyrand et al. 2024). We
computed partial Spearman correlations between the RDMs
derived from this semantic model and the brain RDMs (excluding
shared correlation between brain and the visual model) of PS and
control participants. Direct contrasts revealed reduced partial
Spearman correlations with these semantic computations in the
brain of PS compared to controls (Fig. 3b, P <0.05; uncorrected).
This reduced similarity with semantic representations appeared
as early as ~90 ms after image onset, with effects appearing
until as late as around 400 ms. Note that similar results were
observed when comparing brains and the semantic model
without removing this shared information between brain and
visual model (see Supplementary Figs. 4 and 5).

To better understand the features encoded in the different lay-
ers of the visual and semantic models, we compared the models
with models constructed around the categorical features of our
stimulus set. We constructed one-hot and multihot categorical
models by encoding several dimensions as binary encoding vec-
tors (including face gender, face emotion, face identity, animacy,
object categories, etc.), and measuring the distance between these
encoding vectors across all image pairs. The multihot RDM peaked
in similarity with the semantic model. Correlation of categorical
models with DNN RDMs, on the other hand, showed overall lower
correlations with finer-grained categorical distinctions (e.g. the
one-hot model encoding face gender information) and stronger
dissociations between non-face stimuli along its latest layers.
The correlation between the GUSE RDMs and relevant categorical
models can be found in Supplementary Fig. 6. These correlations,
as well as those with additional behavioral data on high-level
human judgments (n =32; see Supplementary Fig. 7), indicated
that the semantic model contains rich information about ani-
macy, face vs. non-face distinction, function and meaning of
sentence description of images, as well as more fine-grained
face-specific information about gender, emotion, and meaning at
the level of sentence description. In other words, the semantic
model encapsulates rich and diversified high-level conceptual
information about images, including information about faces.

Overall, thus, contrasts with computational models showed
that PS’s brain processing stream exhibits impairments peakingin
higher-level visual (DNN layers 6-7) and semantic (caption-level)
representations.

Discussion

Finding brain correlates for the face individuation deficits seen in
prosopagnosia has proven to be quite challenging, as highlighted
in previous research (Anzellotti et al. 2014; Alonso Prieto et al.
2011; though there are exceptions, as seen in Liu-Shuang et al.
2016). In this study, we addressed this issue embracing a data-
driven approach. We conducted high-density EEG recordings both
on an individual with prosopagnosia (PS) and neurotypical con-
trols while presenting various images from different categories.
We employed RSA (Kriegeskorte, Mur, and Bandettini, 2008) to
assess how the time-resolved representations of the visual stimuli
relate to one another in the brain of PS and in the brains of
controls, as well as how they relate to the representations of
computational models. Our findings revealed that the temporal

evolution of visual representations in PS’s brain follows an abnor-
mal trajectory. Additionally, by comparing PS’s brain representa-
tions with those of computational models of vision and semantics,
we gained insights into the nature of her computational deficits.

To investigate the changes in PS’s brain representations over
time, we conducted a variant of temporal generalization analyses
developed by King and Dehaene (2014). This involved correlating
the time-resolved brain Representational Dissimilarity Matrices
(RDMs) for an individual with all the RDMs of that same indi-
vidual. In the case of neurotypical participants, we observed the
expected temporal generalization of the brain RDMs within the
N170 temporal window. This indicates that the brain’s visual
representation at this point in time is relatively stable as time
progresses. In other words, additional computations after 170 ms
do not significantly alter the brain representations of control
participants. However, in the case of PS, we noted atypical gener-
alization patterns. Specifically, the brain representations around
the P100 time window were abnormally similar to later repre-
sentations, suggesting an excessive generalization of early visual
representations. This overgeneralization was primarily associated
with the similarity between brain activity in trials involving a face
and a nonface stimulus and, to a lesser extent, between two faces,
but not between two non-face stimuli. This implies that the key
differences lie in how the brain represents faces between 80 and
100 ms in PS, possibly due to critical computations in cortical
sites that affect the feedforward signals from early visual areas
responsible in the typical brain for achieving a stable N170 face
representation.

To investigate this possibility, we conducted a comparative
analysis of the RDMs derived from PS’s brain with those generated
by a deep neural network (DNN) trained to distinguish objects
and faces. We assumed that this DNN model represents a nearly
optimal sequence of visual stimuli representations for object
recognition. Our findings revealed that the neural computations
underlying PS’s brain activity in the early layers exhibited a closer
alignment with the model of vision than those of neurotypical
individuals. This suggests that PS’s early brain representations
are, indeed, better building blocks than those of control partic-
ipants for recognizing faces and nonface visual stimuli. As we
delved into the middle layers of the DNN, both PS and neurotyp-
icals showed a relatively similar alignment, and in the later lay-
ers, the brain representations in neurotypical individuals became
more akin to those of the model, that is, more efficient.

It is worth noting that late layers in visual DNNs have pre-
viously been associated with processing in the human infero-
temporal cortex (hIT; Giigli and van Gerven 2015; Khaligh-Razavi
and Kriegeskorte 2014; Jiahui et al. 2023), with a peak in the FFA
(Khaligh-Razavi and Kriegeskorte 2014). These layers are func-
tionally connected to higher-level visual feature representations,
encompassing various aspects of objects, including parts, whole
objects, and viewpoint-invariant features. These findings are thus
in agreement with the previously documented impairments in
both whole face (Ramon et al. 2016) and feature representations
(Caldara et al. 2005; Ramon et al. 2016; Fiset et al. 2017) in patient
PS. One interesting observation from the model to brain com-
parisons performed here is that the different model layers show
similar onsets of peak correlations. This is an observation that has
previously been documented (Cichy et al. 2016). Neural traces, as
assessed through EEG, can exhibit diverse components of feedfor-
ward and feedback signals. In contrast, deep convolutional neural
networks, such as those employed in our study, are intentionally
designed to be hierarchical, featuring progressively abstracted
information from pixel inputs as we move deeper into the network
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layers. Therefore, the absence of a strictly monotonic relationship
between peak onset and model layer is to be expected.

Associations between brain activity and higher-level semantic
computations have only recently gained attention in the field
(Doerig et al. 2022; Dwivedi et al. 2021; Faghel-Soubeyrand et al.
2024; Popham et al. 2021). Here, we demonstrated that the
representational geometry of PS exhibits a substantial, albeit
significantly reduced, correlation with those of a model of
caption-level semantics (Cer et al. 2018; Doerig et al. 2022; Frisby
et al. 2023; Faghel-Soubeyrand et al. 2024) when compared to
controls. Further analyses suggest that this semantic model
encapsulates a wealth of information about various aspects
of face categories, including gender and emotion, differen-
tiation between faces and non-face stimuli, as well as the
functional aspects of objects, faces, and scenes. Our findings
unequivocally illustrate a strong connection between these
semantic brain computations and significant alterations in the
ability to recognize faces, underscoring the importance of these
computations in the context of face recognition (Bruce and
Young, 1986; Duchaine and Yovel 2015; Faghel-Soubeyrand et al.
2024).

In conjunction with similar computational characterizations
of brain representations in individuals with “super-recognition”
of faces (Faghel-Soubeyrand et al. 2024), our findings suggest a
gradient of neural computations spanning from the lower end
to the higher end of face-recognition abilities. For instance, in
the study by Faghel-Soubeyrand et al. (2024), super-recognizers
exhibited increased similarity with mid-level visual and semantic
computations around the N170 and P600 time windows, respec-
tively. In contrast, our results demonstrate that PS shows reduced
similarity with visual and semantic computations. Specifically,
PS’s neural computations, especially in the realm of semantic
processing, appear to be affected at a much earlier stage and to
a greater extent than those of super-recognizers. While semantic
brain computations were enhanced around the P600 time window
in super-recognizers, PS exhibited reduced similarity as early as
the P100, persisting throughout the N170 and N400 time win-
dows. These observations indicate that PS’s deficits in neural
computations commence relatively early along the conventional
processing pathway.

To the best of our knowledge, this study presents the first
analysis of the fine-grained temporal progression of brain
representations in prosopagnosia, alongside a state-of-the-art
computational characterization of these representations. This
comprehension of impaired perceptual representations not only
paves the way for novel approaches to patient rehabilitation
but also holds promise in uncovering and potentially diagnosing
subtle deficits in perception and cognition across diverse clinical
populations. These advancements have been facilitated by recent
technological progress, which has significantly contributed to the
findings of this study.
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