
 

© The Author(s) 2024. Published by Oxford University Press on behalf of National Academy of Sciences. This is an Open 

Access article distributed under the terms of the Creative Commons Attribution License 

(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any 

medium, provided the original work is properly cited.  1 

Decoding face recognition abilities in the human brain 1 

Simon Faghel-Soubeyrand 1,2, Meike Ramon3, Eva Bamps 5, Matteo Zoia 6, Jessica 2 
Woodhams 2, Anne-Raphaelle Richoz4, Roberto Caldara4, Frédéric Gosselin2 & Ian Charest 2 3 

 4 

1. Department of Experimental Psychology, University of Oxford, UK 5 
2. Département de psychologie, Université de Montréal, Canada 6 
3. Institute of Psychology, University of Lausanne, Switzerland 7 
4. Département de Psychology, Université de Fribourg, Switzerland 8 
5. Center for Contextual Psychiatry, Department of Neurosciences, KU Leuven, Belgium 9 
6. Department for Biomedical Research, University of Bern, Switzerland 10 
 11 
Corresponding authors:  12 
Ian Charest, 13 
ian.charest@umontreal.ca 14 
Simon Faghel-Soubeyrand, 15 
simon.faghel-soubeyrand@psy.ox.ac.uk 16 
 17 

Significance  18 
 19 
The ability to robustly recognise faces is crucial to our success as social beings. Yet, we still 20 
know very little about the brain mechanisms allowing some individuals to excel at face 21 
recognition. This study builds on a sizeable neural dataset measuring the brain activity of 22 
individuals with extraordinary face recognition abilities—super-recognisers—to tackle this 23 
challenge. Using state-of-the-art computational methods, we show robust prediction of face 24 
recognition abilities in single individuals from a mere second of brain activity, and reveal 25 
specific brain computations supporting individual differences in face recognition ability. Doing 26 
so, we provide direct empirical evidence for an association between semantic computations 27 
and face recognition abilities in the human brain—a key component of prominent face 28 
recognition models.  29 

 30 

Abstract 31 

 32 
Why are some individuals better at recognising faces? Uncovering the neural mechanisms 33 
supporting face recognition ability has proven elusive. To tackle this challenge, we used a 34 
multi-modal data-driven approach combining neuroimaging, computational modelling, and 35 
behavioural tests. We recorded the high-density electroencephalographic brain activity of 36 
individuals with extraordinary face recognition abilities—super-recognisers—and typical 37 
recognisers in response to diverse visual stimuli. Using multivariate pattern analyses, we 38 
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decoded face recognition abilities from 1 second of brain activity with up to 80% accuracy. To 1 
better understand the mechanisms subtending this decoding, we compared representations in 2 
the brains of our participants with those in artificial neural network models of vision and 3 
semantics, as well as with those involved in human judgments of shape and meaning 4 
similarity. Compared to typical recognisers, we found stronger associations between early 5 
brain representations of super-recognisers and mid-level representations of vision models as 6 
well as shape similarity judgments. Moreover, we found stronger associations between late 7 
brain representations of super-recognisers and representations of the artificial semantic model 8 
as well as meaning similarity judgments. Overall, these results indicate that important 9 
individual variations in brain processing, including neural computations extending beyond 10 
purely visual processes, support differences in face recognition abilities. They provide the first 11 
empirical evidence for an association between semantic computations and face recognition 12 
abilities. We believe that such multi-modal data-driven approaches will likely play a critical role 13 
in further revealing the complex nature of idiosyncratic face recognition in the human brain. 14 
 15 
Introduction 16 

 17 
The ability to robustly recognise the faces of our colleagues, friends and family members is 18 
paramount to our success as social beings. Our brains complete this feat with apparent ease 19 
and speed, in a series of computations unfolding within tens of milliseconds in a wide brain 20 
network comprising the inferior occipital gyrus, the fusiform gyrus, the superior temporal 21 
sulcus, and more anterior areas such as the anterior temporal lobe (1–3). Accumulating 22 
neuropsychological and behavioural evidence indicates that not all individuals, however, are 23 
equally competent at recognising faces in their surroundings (4). Developmental 24 
prosopagnosics show a great difficulty at this task despite an absence of brain injury (5). In 25 
contrast, super-recognisers exhibit remarkable abilities for processing facial identity, and can 26 
recognize individuals even after little exposure several years before (6–8). The specific nature 27 
of the neural processes responsible for these individual differences remains largely unknown. 28 
So far, individual differences studies have used univariate techniques to investigate face-29 
specific aspects of brain processing. This revealed that contrasts between responses to faces 30 
compared to non-faces, measured by the N170 event-related potential component or by the 31 
blood oxygen level dependent signals in regions of interest, are modulated by ability (9–15). 32 
However, univariate and contrast approaches are limited in their capacity to reveal the precise 33 
nature of the underlying brain computations (16–19).  34 
Here, we tackled this challenge with a data-driven approach. We examined the functional  35 
differences between the brains of super-recognisers and typical recognisers using decoding 36 
and representational similarity analyses (RSA; (18, 20–23)) applied to high-density 37 
electrophysiological (EEG) signals and artificial neural network models. We recruited 33 38 
participants, including 16 super-recognisers, i.e., individuals better than the 98th percentile on 39 
a battery of face recognition tests (8); Fig. 1a). We measured EEG in more than 100,000 trials 40 
while participants performed a one-back task. The objects depicted in the stimuli belonged to 41 
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multiple visual categories including face images of different sexes, emotions, and identities, as 1 
well as images of man-made and non-face natural objects (e.g., a computer, a plant), animals 2 
(e.g., a giraffe, a monkey), and scenes (e.g., a city, a dining room; Fig. 1b).  3 

 4 

Results 5 

Behavioural results  6 
 7 
All participants’ face recognition ability was assessed using the Cambridge Face Memory Test 8 
long-form (CFMT+, (8). Scores on the CFMT+ ranged from 50 to 85 in the typical recognisers 9 
group (MTRs=70.00; SD=9.09), and from 92 to 100 in the experimental super-recogniser group 10 
(MSRs=95.38, SD=2.68; difference between groups : t(31)=10.6958, p<.00001 see Fig. 1a). 11 
The main experimental task was a one-back task (Fig. 1b). Accuracy was significantly greater 12 
for the super-recognisers (MSRs=.8649, SD=.0626) than for the typical recognisers 13 
(MTRs=.7591, SD=.096; t(30)=3.6131, p=.0011). This was also true when analysing separately 14 
face (MSRs= .8677, SD=.0590; MTRs=.7385, SD=.1048; t(30)=4.2180,  p=.00020) and non-face 15 
trials (MSRs=.8619, SD=.0750; MTRs=.7798, SD=.1000; t(30)=2.6000, p=.0143). Furthermore, 16 
accuracy in the one-back task was positively correlated with scores on the CFMT+ (r=.68, 17 
p<.001;  RT was marginally associated with CFMT+, r=.37, p=.04). We observed a significant 18 
difference in response times between the two groups for face stimuli (MSRs=0.6222 ms, 19 
SD=.1386 ms; MTRs= 0.6817 ms, SD=.0660 ms;  p = 0.0258) but not for non-face stimuli 20 
(MSRs=0.6262 ms, SD=.1401 ms; MTRs= 0.6739 ms, SD=.0643 ms;  p = .0801). 21 

 22 

Discriminating super-recognisers and typical recognisers from 1 second of brain 23 

activity 24 

With this sizable and category-rich dataset, we first attempted to classify a participant as either 25 
a super- or a typical recogniser based solely on their brain activity. More specifically, we 26 
trained Fisher linear discriminants to predict group membership from single, 1-second trials of 27 
EEG patterns (in a moving searchlight of five neighbouring electrodes; Fig. 2b). We observed 28 
up to ~80% cross-validated decoding performance, peaking over electrodes in the right 29 
hemisphere. This performance is impressive given that the noise ceiling imposed on our 30 
classification by the test-retest reliability of the CFMT+ (8, 24), the gold-standard test used to 31 
identify super-recogniser individuals, is ~93% (SD=2.28%; see Supplementary material). To 32 
reveal the time course of these functional differences, we applied the same decoding 33 
procedure to each 4-ms interval of EEG recordings. Group-membership predictions attained 34 
statistical significance (p<.001, permutation tests, Fig. 2a) from about 65 ms to at least 1 s 35 
after stimulus onset, peaking around 135 ms, within the N170 window (25, 26).  36 
 Notably, similar results were obtained following the presentation of both face and non-37 
face visual stimuli (Fig. 2a; see also Figure S1). This did not result from face representations 38 
stored in short-term memory from one-back trials. Indeed, we repeated our decoding analysis 39 
for non-face trials either preceded by face trials or by non-face trials, and found significant 40 
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decoding of group membership in both cases (Figure S1). In addition, we successfully cross-1 
decoded group membership from a model trained on face EEG activity and applied to non -face 2 
EEG activity (see Figure S2). The decoding of group-membership could be based on various 3 
features. Some of these features are directly related to brain representations for object and 4 
face recognition, and these aspects are further explored in subsequent sections of this article. 5 
On the other hand, there could be additional contributing features that are not directly linked to 6 
object and face recognition. For instance, differences in motor responses between the two 7 
subject groups might explain these results to some extent. However, excluding the 10% of 8 
trials with a motor response did not affect decoding accuracy (Figure S2). Additionally, the 9 
decoding model might have relied on potential noise differences between the two subject 10 
groups. Nevertheless, our analysis did not reveal any evidence supporting such differences in 11 
the cross-participant similarity of the Representational Dissimilarity Matrices (RDMs) for both 12 
groups (see section Linking neural representations with computational models of vision; 13 
Figure S3). 14 
 15 
Predicting individual recognition ability from 1 second of brain activity 16 
An ongoing debate in individual differences research is whether the observed effects emerge 17 
from qualitative or quantitative changes in the supporting brain mechanisms (27–35). The 18 
decoding results presented up to this point might give the impression that face recognition 19 
ability is supported by qualitative differences in brain mechanisms. However, these results 20 
were obtained with dichotomous classification models applied, by design, to the brains of 21 
individuals from a bimodal distribution of ability scores (e.g. (32). 22 
To better assess the nature of the relationship between neural representations and ability in 23 
the general population, we thus performed a new decoding analysis on the typical recognisers 24 
only, using a continuous regression model. Specifically, we used cross-validated fractional 25 
ridge regression (36) to predict individual CFMT+ face recognition ability scores from single-26 
trial EEG data. This showed essentially similar results to the previous dichotomic decoding 27 
results: performance was above statistical threshold (p<.01, FDR-corrected) from about 80 ms 28 
to at least 1 s, peaking around 135 ms following stimulus onset for both face and non -face 29 
stimuli (Fig. 2c, peak-rhoface=.4149 at 133 ms, peak-rhonon-face=.4899 at 141 ms). This accurate 30 
decoding of individual scores from EEG patterns is compatible with a quantitative account of 31 
variations in brain mechanisms across individuals differing in face recognition abilities. 32 
Altogether, these decoding results provide evidence for important, quantitative and temporally 33 
extended variations in the brain activity supporting face recognition abilities. This extended 34 
decoding suggests effects of individual ability across multiple successive processing stages. 35 
 36 
Linking neural representations with computational models of vision 37 

 38 
Decoding time courses, however, offer limited insights on the level of brain computations (37, 39 
38). To better characterise the visual brain computations covarying with face recognition 40 
ability, we compared, using representational similarity analysis (20–22, 39), the brain 41 
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representations of our participants to that of convolutional neural networks (CNNs) trained to 1 
categorise objects (40–42). These CNNs process visual features of gradually higher 2 
complexity and abstraction along their layers (42), from low-level (e.g., orientation, edges) to 3 
high-level features (e.g., objects and object parts). 4 
The brain representations were characterised by computing representational dissimilarity 5 
matrices (RDMs) for each participant and for each 4-ms time interval. These brain RDMs were 6 
derived using the cross-validated decoding performance of a linear discriminant model, where 7 
brain activity was decoded for every pair of stimuli at a given time interval (43, 44); see Figure 8 
S4 for the group-average RDMs and time course of key categorical distinctions). The visual 9 
model representations were characterised by computing RDMs from the layers of the CNNs, 10 
using Pearson correlations of the unit activations across all pairs of stimuli. Compared to 11 
typical participants, we found that the brain RDMs of super-recognisers showed larger mutual 12 
information (45) with the layer RDMs of CNNs that represent mid-level features (e.g., 13 
combinations of edges, contour, shape, texture; (42, 46) between 133 and 165 ms (Fig. 3a, 14 
p<.05, cluster-test; see also Figure S5 for similar results with unconstrained analyses; 15 
supplementary analyses on specific category conditions in the RDMs are shown on Figure 16 
S6). These results indicate that mid-level representations of an object-trained CNN matched 17 
the representations of super-recognisers more closely than those of typical participants. We 18 
replicated these results using a face-trained CNN (e.g., (47–49), VGGface (50), which possess 19 
mid-level representations similar to those of object-trained CNN (see Figure S7; p<.05, 20 
cluster-test). The stronger association between brain representational geometries of the super-21 
recognisers with computational models of vision could be explained by a marked difference in 22 
signal to noise between the two groups of participants. To control for this potential confound, 23 
we computed the cross-participant similarity of the RDMs in both groups (see Figure S3). If 24 
the signal to noise was larger in the super-recognisers, we would expect larger cross-25 
participant similarity of the RDMs, however, we observed no significant difference between the 26 
two groups.   27 
 28 
Linking neural representations with computational model of semantics 29 

 30 
 The finding that ability decoding was significant as late as 1 s after stimulus onset hints 31 
that brain computations beyond what is typically construed as pure visual processing also 32 
differ as a function of face recognition ability. To test this hypothesis, we asked five new 33 
participants to write captions describing the images presented during our experiment (e.g., “A 34 
city seen through a forest.”), and used a deep averaging network (Google Universal Sentence 35 
Encoder, GUSE; (51) to transform these captions into embeddings (points in a caption space). 36 
GUSE has been trained to predict semantic textual similarity from human judgments, and its 37 
embeddings generalise to an array of other semantic judgement tasks (51). We then compared 38 
the RDMs computed from this semantic model to the brain RDMs of both typical - and super-39 
recognisers. Importantly, both this comparison, and the one comparing brain and visual 40 
models, excluded the information shared between the semantic and visual models (but see 41 
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Figure S8 for similar results with unconstrained analyses). We found larger mutual information 1 
with these semantic representations in the brains of super-recognisers than in those of typical 2 
recognisers in a late window between 598 and 727 ms (Fig. 3b, p<.05, cluster-test). 3 
Supplementary analyses on specific stimulus categories of the RDMs (Figure S9) suggest that 4 
these results emerged mainly from the face-vs-face and face-vs-non-face stimuli pair 5 
conditions.  6 
 7 
Linking neural representations with behavioural representations for shape and 8 

semantic similarity judgements 9 
 10 
Our findings so far suggest that mid-level visual and semantic brain processes both support 11 
individual differences in face recognition abilities. We looked for further support for these 12 
conclusions using RDMs derived from a behavioural experiment. A group of 32 new human 13 
participants were submitted to two multiple arrangement tasks (52–54) in which they were 14 
asked to evaluate the shape similarities of all pairs of the 49 visual stimuli used in the main 15 
experiment, and the meaning similarities of all pairs of the 49 mean sentence captions 16 
produced by five human participants to describe these images and used for the semantic 17 
model (see section Linking neural representations with computational model of semantics). 18 
More specifically, participants arranged the images/sentences inside a white circular arena 19 
according to the task instructions using simple drag and drop operations (see Fig. 4). We 20 
computed the mutual information between the mean RDMs extracted from each of these tasks 21 
and the time-resolved brain RDMs of super- and typical recognisers as well as the same while 22 
excluding the information shared with the other task. Results indicated only a small trend for 23 
shape representations being enhanced around mid-latencies in super-recognisers relative to 24 
typical recognisers which did not survive cluster correction (p<.01, uncorrected; pMI = .1259; 25 
pCMI = .2098; cluster-corrected; see Fig. 4). Meaning representations were enhanced in late 26 
latencies in super-recognisers compared to typical recognisers (sentence meaning : 635-787 27 
ms p <.05, cluster-corrected; see Fig. 4). These results confirm that semantic representations 28 
at relatively late latencies and, to a lesser degree, shape representations at mid latencies are 29 
enhanced in the brains of super-recognisers. 30 
 31 

Discussion 32 

 33 
Using a data-driven approach combining neuroimaging, computational models, and 34 
behavioural tests, we characterised the computations modulated by variations in face 35 
recognition ability in the human brain. We recorded high -density electroencephalographic 36 
(EEG) responses to face and non-face stimuli in super-recognisers and typical recognisers. 37 
Using multivariate analysis, we reliably decoded group membership as well as recognition 38 
abilities of single individuals from a single second of brain activity. We then characterised the 39 
neural computations underlying these individual differences by comparing human brain activity 40 
with representations from artificial neural network models of vision and semantics using 41 
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representational similarity analysis. Furthermore, we compared the brain activity with similarity 1 
judgments derived from additional human participants engaged in two tasks. In the first task, 2 
participants judged our visual stimuli on the similarity of their shape, while In the second task, 3 
participants judged sentence captions describing these stimuli on the similarity of their 4 
meaning. These sets of comparisons revealed two main findings. First, we found higher 5 
similarity between early brain representations of super-recognisers and mid-level 6 
representations of vision models as well as, to a lesser degree, shape similarity judgments. 7 
Second, this approach revealed higher similarity between late brain representations of super-8 
recognisers and representations of an artificial semantic model as well as sentence caption 9 
similarity judgments. To our knowledge, this is the first demonstration of a link between face 10 
recognition ability and brain computations beyond high -level vision. Overall, these findings 11 
revealed specific computations supporting our individual ability to recognise faces, and 12 
suggest widespread variations in brain processes related to this crucial ability. 13 
We achieved robust decoding of face recognition ability when examining EEG responses to 14 
face and non-face stimuli. This is consistent with several neuropsychological (30, 55–59) and 15 
brain imaging findings (12, 29, 60, 61) showing face and non-face processing effects in 16 
individuals across the spectrum of face recognition ability ((19, 62); but see (13, 63–65)).  17 
The decoding we observed for face and non-face stimuli peaked at right occipito-temporal 18 
electrodes, in the temporal window around the N170 component (25). At that time, the 19 
representations in the brains of our participants differed most with respect to the mid-layer 20 
representations of artificial models of vision. These layers have been previously linked to 21 
processing in human infero-temporal cortex (hIT; (42, 66–68) and functionally to mid-level 22 
feature representations such as combinations of edges and parts of objects (42, 46). Such 23 
associations with the N170, however, do not mean that this component is exclusively involved 24 
in these mid-level processes. Rather, it suggests that other visual computations, including the 25 
high-level visual computations usually associated with the N170, do not differ substantially 26 
between super-recognisers and typical recognisers. The fact that these mid-level features are 27 
mostly shared between face and non-face stimuli could explain at least partly the high 28 
decoding performance observed for both classes of stimuli. They suggest that a mid-level 29 
visual processing is enhanced in SRs leading to improved processing of faces and objects.  30 
Crucially, we found that face recognition ability is also associated with semantic computations 31 
that extend beyond basic-level visual categorisation in a late time-window around the P600 32 
component (69–71). Recent studies using computational techniques have shown that word 33 
representations derived from models of natural language processing explain significant 34 
variance in the visual ventral stream (18, 72–74). The current study goes beyond this recent 35 
work in two ways. First, our use of human sentence description and sentence encoders to 36 
characterise semantic (caption-level) computations provides a more abstract description of 37 
brain representations. Second, and most importantly, our work revealed a link between 38 
semantic brain computations and individual differences in face recognition ability. An 39 
association between semantic processes and face recognition ability had been posited in 40 
models of face recognition (1, 75) but, to our knowledge, it had never been shown empirically 41 
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before. 1 
Overall, thus, our findings suggest important differences in perceptual and semantic 2 
representations in individuals with outstanding ability to recognise faces. The higher similarity 3 
with computational models of vision indicate that super-recognisers have more efficient mid-4 
level representations. These enhanced representations suggest that part-based information 5 
about faces and objects, putatively emerging from mid-level occipito-temporal regions (76), is 6 
richer in individuals with strong face recognition abilities (77). Furthermore, our findings show 7 
that the more similar the brain representations of an individual are to task-optimised 8 
computational models of semantics, the better they are at recognising faces. These enhanced 9 
late semantic representations, for example, might emerge from enhanced subordinate-level 10 
information about objects and faces (78, 79). 11 
Our approach of decoding group membership to reveal electrophysiological differences 12 
between super-recognisers and typical recognisers, followed by representational similarity 13 
analysis with computational models of vision and language, enabled revealing potential 14 
mechanisms underlying enhanced recognition ability. Other possible differences between our 15 
participants might also contribute to our ability to decode their brain signals. Differences in top-16 
down (i.e. attention) mechanisms, better ability to memorise images more generally, or both, 17 
could also lead to enhanced representations. Interestingly, we could decode from both face 18 
and nonface categories, and across categories (training with face trials and testing on non -face 19 
trials) suggesting that the mechanisms subtending the enhanced abilities of super-recognisers 20 
are not restricted to faces (4), (56).  21 
Furthermore, while our decoding approach indicates that important differences in brain 22 
processing emerge from early (80 ms) to late (~1s) processing windows, our RSA modelling 23 
approach only explained part of these processing windows. Specifically, while broad visual 24 
(~150 ms), face-specific (~430 ms), and semantic representations (~600 ms) were found to 25 
differ in super-recognisers using this computational approach, it still remains to be shown what 26 
specific representations are critical in differentiating the best face recognisers during early 27 
(<150 ms) and very late (>800 ms) windows of processing.  28 
In conclusion, our results offer a stepping stone for a better understanding of face recognition 29 
idiosyncrasies in the human brain. Indeed, with the development of novel and better artificial 30 
models simulating an increasing variety of cognitive processes, and with the technological 31 
advances allowing the processing of increasingly larger neuroimaging datasets, the approach 32 
described here provides a new and promising way to tackle the link between individual 33 
differences in human behaviour and specific computations in the brain. In addition, this 34 
decoding approach may provide quick and accurate alternatives to standardised behavioural 35 
tests assessing face recognition ability, for example in the context of security settings that 36 
benefit from strong face processing skills among their personnel (such as police agencies, 37 
border patrol, etc.). It could also be used in a closed-loop training procedure designed to 38 
improve face recognition ability (80). 39 

Methods 40 

Participants  41 

A total of 33 participants were recruited for this study. The first group consisted of 16 42 
individuals with exceptional ability in face recognition — super-recognisers. The second group 43 
was composed of 17 neurotypical controls. These sample sizes were chosen according to the 44 
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effect sizes described in previous multivariate object recognition studies (43, 44, 54). The data 1 
from one super-recogniser was excluded due to faulty EEG recordings. No participant had a 2 
history of psychiatric diagnostic or neurological disorder. All had normal or corrected to normal 3 
vision. This study was approved by the Ethics and Research Committee of the University of 4 
Birmingham, and informed consent was obtained from all participants. 5 

Sixteen previously known super-recognisers were tested in the current study (30-44 years old, 6 
10 female). Eight of these (SR1-SR8) were identified by Prof. Josh Davis from the University of 7 
Greenwich using an online test battery comprising a total of six face cognition tasks (6) and 8 
tested at the University of Birmingham. The remaining eight (SR-9 to SR-16) were identified 9 
using three challenging face cognition tests (7) and were tested at the University of Fribourg. 10 
The behavioural test scores for all participants are provided in Tables S1 and S2. Across SR 11 
cohorts, the Cambridge Face Memory Test long-form (CFMT+; (8) was used as the measure 12 
of face identity processing ability. A score greater than 90 (i.e., 2 SD above average) is 13 
typically considered the threshold for super-recognition (8, 56, 81). Our 16 super-recognisers 14 
all scored above 92 (M=95.31; SD=2.68). A score of 92 corresponds to the 99 th percentile 15 
according to our estimation from a group of 332 participants from the general population 16 
recruited in three independent studies (77, 82, 83).  17 

An additional 17 typical recognisers (20-37 years old, 11 female) were recruited and tested on 18 
campus at the University of Fribourg (n=10) and the University of Birmingham (n=7). Their 19 
CFMT+ scores ranged from 50 to 85 (M=70.00; SD=9.08). Neither the average nor the 20 
distribution of this sample differed significantly from those of the 332 participants from the 21 
general population mentioned above (see Fig. 1a; t(346)=1.3065, p=0.1922; two-sample 22 
Kolmogorov-Smirnov test; D(346)=0.2545, p=0.2372). 23 

Tasks 24 

CFMT+ 25 

All participants were administered the CFMT long-form, or CFMT+ (8). In the CFMT+, 26 
participants are required to memorise a series of face identities, and to subsequently identify 27 
the newly learned faces among three faces. It includes a total of 102 trials of increasing 28 
difficulty. The duration of this test is about 15 minutes. EEG was not recorded while 29 
participants completed this test. 30 

One-back task 31 

Stimuli. The stimuli used in this study consisted of 49 images of faces, animals (e.g., giraffe, 32 
monkey, puppy), plants, objects (e.g., car, computer monitor, flower, banana), and scenes 33 
(e.g., city landscape, kitchen, bedroom). The 24 faces (13 identities, 8 males, and 8 neutral, 8 34 
happy, 8 fearful expressions) were sampled from the Radboud Face dataset (84). The main 35 
facial features were aligned across faces using Procrustes transformations. Each face image 36 
was revealed through an ellipsoid mask that excluded non-facial cues. The non-face images 37 
were sampled from the stimulus set of Kiani et al.  (85). All stimuli were converted to 250 x 250 38 
pixels (8x8 deg of visual angle) greyscale images. The mean luminance and the luminance 39 
standard deviation of these stimuli were equalised using the SHINE toolbox (86). 40 
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Procedure. We measured high-density electroencephalographic (EEG; sampling rate = 1024 1 
Hz; 128-channel BioSemi ActiveTwo headset) activity while participants performed ~3200 trials 2 
of a one-back task in two recording sessions separated by at least one day and by a maximum 3 
of two weeks (Fig. 1b). Participants were asked to press a computer keyboard key on trials 4 
where the current image was identical to the previous one. Repetitions occurred with a 0.1 5 
probability. They were asked to respond as quickly and accurately as possible. Feedback was 6 
done in the form of a change in colour of the fixation point (red or green) after a repetition trial 7 
(which happened on a .1 probability basis). This was done to help participants pay attention 8 
during the task. Target trials were not excluded from the analyses. A trial unravelled as follows: 9 
a white fixation point was presented on a grey background for 500 ms (with a jitter of ± 50 ms); 10 
followed by a stimulus presented on a grey background for 600 ms; and, finally, by a white 11 
fixation point on a grey background for 500 ms. Participants had a maximum of 1100 ms 12 
following stimulus onset to respond. This interval, as well as the 200 ms preceding stimulus 13 
onset, constituted the epoch selected for our EEG analyses. In total, our participants 14 
completed 105,600 one-back trials which constituted ~32 hours of EEG epochs. 15 

Shape and sentence meaning multiple arrangements tasks. Thirty two new neurotypical 16 
participants took part in two multiple arrangements tasks (22, 87) in counterbalanced orders. In 17 
two of the tasks, they were asked to evaluate the shape or function similarities of the 49 stimuli 18 
used in the main experiment while, in the other task, they were instructed to judge the meaning 19 
similarities of sentence captions describing these stimuli (see Semantic Caption -level Deep 20 
Averaging Neural Network RDM for more information about these sentence captions). 21 
  22 
More specifically, participants were asked to arrange stimuli or sentence captions on a 23 
computer screen inside a white circular arena by using computer mouse drag and drop 24 
operations. During the shape/function (vs. meaning) multiple arrangement task, they were 25 
instructed to place the displayed visual stimuli (vs. sentence captions) in such a way that their 26 
pairwise distances match their shape/function (vs. meaning) similarities as much as possible 27 
(Fig. 4). On the first trial of each task, participants arranged all 49 items. On subsequent trials, 28 
a subset of these items was selected based on an adaptive procedure aimed at minimising 29 
uncertainty for all possible pairs of items (e.g. items that initially were placed very close to each 30 
other) and at better approximating the high-dimensional perceptual representational space 31 
(87). This procedure was repeated until the task timed out (20 min). 32 
  33 
We computed one RDM per task per participant. Three participants were excluded from the 34 
final sample because their RDMs differed from the mean RDMs by more than two standard 35 
deviations. Finally, we averaged the remaining individual RDMs within each task. 36 

Analyses 37 

All reported analyses were performed independently for each EEG recording session and then 38 
averaged. Analyses were completed using custom code written in MATLAB (MathWorks) and 39 
Python. 40 

EEG preprocessing  41 

EEG data was preprocessed using FieldTrip (88): continuous raw data was first re-referenced 42 
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relative to Cz, filtered with a band-pass filter [0.01-80 Hz], segmented into trial epochs from -1 
200 ms to 1100 ms relative to stimulus onset, and down-sampled at 256 Hz.  2 

Decoding analyses 3 

Whole-brain analyses. To predict group-membership from EEG brain activity, we trained 4 
Fisher linear discriminant classifiers to predict participants’ group membership based on raw 5 
EEG topographies, using all 128 channels of single-trial EEG data as features. Notably, here, 6 
the decoding is made on an across-participants basis. This was done across all trials of either 7 
face or non-face condition, for each of the two sessions separately (~26,000 observations per 8 
condition, per session, 5-fold cross-validation, 5 repetitions; (89, 90). The number of trials were 9 
matched across participants. This process was repeated over all EEG time samples 10 
separately, starting from -200 ms and ending 1100 ms after stimulus onset, creating decoding 11 
accuracy time courses. The Area Under the Curve (AUC) was used to assess sensitivity. 12 
Decoding time courses were averaged across the two EEG sessions. The resulting evidence 13 
indicates when super-recognisers can be categorised from brain activity when processing 14 
faces (blue) and non-face stimuli (grey), as shown in Figure 2a. Additional control decoding 15 
analyses investigating effects of one-back trials on the predictions are shown in Figure S1. 16 
These trials required that our participant compared their representations of the presented 17 
image and the one stored in short-term memory. This showed similar findings, with one 18 
notable difference being that the face-face discrimination condition was the one that obtained 19 
peak decoding accuracy. 20 

Searchlight analysis. We conducted a searchlight analysis decoding EEG signals from all 21 
subsets of five neighbouring channels to characterise the scalp topographies of group-22 
membership AUC. This searchlight analysis was done either using the entire EEG time series 23 
of a trial (0-1100 ms; Fig. 2b, leftmost topographies), or using 60 ms temporal windows 24 
(centred on 135 ms, 350 ms, 560 ms, and 775 ms; Fig. 2b rightmost topographies). We ran 25 
additional control searchlight decoding procedures investigating the effect of one-back trials 26 
(Figure S1).  27 

Regression analysis. We used fractional ridge regression models (36) to predict individual 28 
face recognition ability scores (CFMT+) among the typical recognisers from EEG patterns 29 
across time. We trained our model on subsets of 60% of the EEG patterns. We chose the 30 
alpha hyperparameter with the best coefficient of determination among 20 alpha 31 
hyperparameters ranging linearly from 0.001 to 0.99 applied on a 30% validation set. The 32 
decoding performance was assessed using the Spearman correlation between the CFMT+ 33 
scores and predictions from the overall best model (applied on the remaining 10% of EEG 34 
patterns). This process was repeated 10 times and the Spearman correlations were averaged. 35 
Significance was assessed using a permutation test (see Group comparisons and inferential 36 
statistics section). 37 

Representational Similarity Analysis of brain and computational models 38 

We compared our participants’ brain representations to those from visual and semantic 39 
(caption-level) artificial neural networks using Representational Similarity Analysis (RSA; (20–40 
22, 39).  41 
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Brain Representational Dissimilarity Matrices. For every participant, we trained a Fisher 1 
linear discriminant to distinguish pairs of stimuli from every 4-ms intervals of EEG response (on 2 
all 128 channels) to these stimuli from -200 to 1100 ms after stimulus onset (91, 92). Cross-3 
validated AUC served as pairwise classification dissimilarity metric. By repeating this process 4 
for all possible pairs (1176 for our 49 stimuli), we obtained a representational dissimilarity 5 
matrix (RDM). RDMs are shown for selected time points in Figure S4.  6 
 7 
Visual Convolutional Neural Networks RDMs. We used a pre-trained AlexNet (40) as one 8 
model of the visual computations along the ventral stream (42). Our 49 stimuli were input to 9 
AlexNet. Layer-wise RDMs were constructed comparing the unit activation patterns for each 10 
pair of images using Pearson correlations. Similarly, we computed layer-wise RDMs from 11 
another well-known CNN, VGG-16 (see Figure S5). Following previous studies using this 12 
model (93, 94), we averaged the convolutional layer RDMs situated between each max pooling 13 
layers and the layers’ input into five aggregated convolutional RDMs (e.g. conv1-1 & conv1-2 14 
into RDM-conv1); this facilitated the comparison of our results with the five convolutional layers 15 
of AlexNet. 16 
 17 
Semantic Caption-level Deep Averaging Neural Network RDM. We asked five new 18 
participants to provide a sentence caption describing each stimulus (e.g., “a city seen from the 19 
other side of the forest”, see Fig. 1d) using the Meadows online platform (www.meadows-20 
research.com). The sentence captions were input in Google’s universal sentence encoder 21 
(GUSE; (51) resulting in 512 dimensional sentence embeddings for each stimulus. We then 22 
computed the dissimilarities (cosine distances) between the sentence embeddings across all 23 
pairs of captions, resulting in a semantic caption-level RDM for each participant. The average 24 
RDM was used for further analyses. 25 

Comparing brain representations with computational models 26 
 27 
We compared our participants’ brain RDMs to those from the vision (Fig. 3a) and semantic  28 
(Fig. 3b) models described in the previous section using Conditional Mutual Information (45), 29 
which measures the statistical dependence between two variables (e.g. mutual information 30 
I(x;y)), removing the effect from a third variable (i.e. I(x;y|z)). Additional comparisons using 31 
unconstrained Mutual Information between brain RDMs and both models are shown in Figure 32 
S5 and S8. 33 

Group comparison and inferential statistics 34 
 35 
Comparison of Conditional Mutual Information time courses. Time courses of CMI were 36 
compared between the super-recognisers and typical recognisers using independent samples 37 
t-tests and a Monte Carlo procedure at a p-value of .05, as implemented in the Fieldtrip 38 
Toolbox (88). Family-wise errors were controlled for using cluster-based corrections, with 39 
maximum cluster size as cluster-level statistic and an arbitrary t threshold for cluster statistic of 40 
[-1.96, 1.96] for the comparison of brain and semantic (excluding CNN) and for the comparison 41 
of brain and CNN (excluding semantic) time courses. The standard error is shown for all 42 
curves as colour-shaded areas (Fig. 3). Analyses with MI (brain; CNN) and MI (brain; 43 
semantic) were completed in an identical manner. 44 
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Time course of group-membership decoding. Significance was assessed using non-1 
parametric permutation tests. We simulated the null hypothesis by training the linear classifier 2 
to identify shuffled group-membership labels from the experimental EEG patterns. This 3 
process was repeated 1000 times for each time point and each one of the two sessions. We 4 
then compared the real, experimental decoding value at each time point to its corresponding 5 
null distribution, and rejected the null hypothesis if the decoding value was greater than the 6 
prescribed critical value at a p <.001 level.  7 
  8 
Time course of individual ability decoding using ridge regression. Significance was again 9 
assessed using non-parametric permutation testing. The ridge regression analysis predicted 10 
cross-validated CFMT+ scores from single trial EEG patterns, and goodness of fit is reported 11 
using Spearman’s correlation between the predicted and observed CFMT+ scores. Under the 12 
null hypothesis that all participants elicited comparable EEG response patterns, irrespective of 13 
their CFMT+ score, the face recognition ability scores are exchangeable. We simulated this 14 
null hypothesis by repeating the ridge regression model training using randomly shuffled 15 
CFMT+ scores. The predicted CFMT+ scores were then correlated to the empirical, observed 16 
CFMT+ scores using Spearman’s correlation, and this was repeated 1000 times for each time 17 
point. We finally compared the real, experimental correlation value with its corresponding null 18 
distribution at each time point, and rejected the null hypothesis if the correlation value was 19 
greater than the prescribed critical value at a p <.01 level. 20 
 21 
Data availability 22 

 23 
High-density EEG data associated with this article is available on The Open Science 24 
Framework  (https://osf.io/pky28/). 25 
 26 

Acknowledgements 27 

 28 
We thank Prof. Josh P. Davis for sharing behavioural scores of super-recognisers and 29 
establishing first contact to the UK-based Super-Recognizers reported here. We also thank 30 
Mick Neville, from Super-Recognisers Ltd., who helped us to get in contact with some of our 31 
super-recognizer participants. We thank Rose Jutras, who helped with data acquisition. 32 
Funding for this project was supported by an ERC Starting Grant [ERC-StG-759432] to I.C, an 33 
ERSC-IAA grant to J.W., I.C. and S.F.S., by a Swiss National Science Foundation PRIMA 34 
(Promoting Women in Academia) grant [PR00P1_179872] to M.R., and by IVADO (2021-35 
6707598907), NSERC, and UNIQUE graduate scholarships to S.F.S. This manuscript was 36 
posted on a preprint: https://www.biorxiv.org/content/10.1101/2022.03.19.484245v3. 37 
https://doi.org/10.1101/2022.03.19.484245  38 
 39 
  40 
Author contributions 41 
(CRediT standardised author statement) 42 
 43 
S.F-S.: Conceptualisation, methodology, software, formal analysis, investigation, data curation, 44 
writing - original draft, visualisation, supervision, project administration, funding acquisition. 45 
M.R.: Investigation, resources, project administration, writing - review and editing. E.B.: 46 

ACCEPTED M
ANUSCRIP

T

D
ow

nloaded from
 https://academ

ic.oup.com
/pnasnexus/advance-article/doi/10.1093/pnasnexus/pgae095/7616957 by U

niversity of Fribourg user on 18 M
arch 2024



 

14 
 

investigation, project administration. M.Z.: investigation. J.W.: funding acquisition, writing - 1 
review and editing. A-R.R.: Investigation. R.C.: Resources. F.G.: Methodology, writing - 2 
original draft, supervision, funding acquisition. I.C.: Supervision, methodology, software, 3 
resources, formal analysis, writing - original draft, project administration, funding acquisition.  4 
 5 

Competing interests 6 

 7 

The authors declare no competing interests. 8 
 9 

References 10 

1.  B. Duchaine, G. Yovel, A Revised Neural Framework for Face Processing. Annu Rev 11 
Vis Sci 1, 393–416 (2015). 12 

2.  N. Kanwisher, J. McDermott, M. M. Chun, The fusiform face area: a module in human 13 
extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311 (1997). 14 

3.  K. Grill-Spector, K. S. Weiner, K. Kay, J. Gomez, The Functional Neuroanatomy of 15 
Human Face Perception. Annu Rev Vis Sci 3, 167–196 (2017). 16 

4.  D. White, A. Mike Burton, Individual differences and the multidimensional nature of face 17 
perception. Nature Reviews Psychology (2022) https:/doi.org/10.1038/s44159-022-00041-3. 18 

5.  T. Susilo, B. Duchaine, Advances in developmental prosopagnosia research. Current 19 
Opinion in Neurobiology 23, 423–429 (2013). 20 

6.  E. Noyes, J. P. Davis, N. Petrov, K. L. H. Gray, K. L. Ritchie, The effect of face masks 21 
and sunglasses on identity and expression recognition with super-recognizers and typical 22 
observers. R Soc Open Sci 8, 201169 (2021). 23 

7.  M. Ramon, Super-Recognizers –a novel diagnostic framework, 70 cases, and 24 
guidelines for future work. Neuropsychologia, 107809 (2021). 25 

8.  R. Russell, B. Duchaine, K. Nakayama, Super-recognizers: people with extraordinary 26 
face recognition ability. Psychon. Bull. Rev. 16, 252–257 (2009). 27 

9.  D. B. Elbich, S. Scherf, Beyond the FFA: Brain-behavior correspondences in face 28 
recognition abilities. Neuroimage 147, 409–422 (2017). 29 

10.  G. Herzmann, O. Kunina, W. Sommer, Individual differences in face cognition: brain –30 
behavior relationships. Journal of Cognitive (2010). 31 

11.  L. Huang, et al., Individual differences in cortical face selectivity predict behavioral 32 
performance in face recognition. Front. Hum. Neurosci. 8, 483 (2014). 33 

12.  L. Kaltwasser, A. Hildebrandt, G. Recio, O. Wilhelm, W. Sommer, Neurocognitive 34 
mechanisms of individual differences in face cognition: a replication and extension. Cogn. 35 

ACCEPTED M
ANUSCRIP

T

D
ow

nloaded from
 https://academ

ic.oup.com
/pnasnexus/advance-article/doi/10.1093/pnasnexus/pgae095/7616957 by U

niversity of Fribourg user on 18 M
arch 2024



 

15 
 

Affect. Behav. Neurosci. 14, 861–878 (2014). 1 

13.  M. Lohse, et al., Effective Connectivity from Early Visual Cortex to Posterior 2 
Occipitotemporal Face Areas Supports Face Selectivity and Predicts Developmental 3 
Prosopagnosia. J. Neurosci. 36, 3821–3828 (2016). 4 

14.  B. Rossion, T. L. Retter, J. Liu-Shuang, Understanding human individuation of 5 
unfamiliar faces with oddball fast periodic visual stimulation and electroencephalography. Eur. 6 
J. Neurosci. 52, 4283–4344 (2020). 7 

15.  H. Nowparast Rostami, W. Sommer, C. Zhou, O. Wilhelm, A. Hildebrandt, Structural 8 
encoding processes contribute to individual differences in face and object cognition: Inferences 9 
from psychometric test performance and event-related brain potentials. Cortex 95, 192–210 10 
(2017). 11 

16.  K. Vinken, T. Konkle, M. Livingstone, The neural code for “face cells” is not face 12 
specific. bioRxiv, 2022.03.06.483186 (2022). 13 

17.  M. Visconti di Oleggio Castello, J. V. Haxby, M. I. Gobbini, Shared neural codes for 14 
visual and semantic information about familiar faces in a common representational space. 15 
Proc. Natl. Acad. Sci. U. S. A. 118 (2021). 16 

18.  K. Dwivedi, M. F. Bonner, R. M. Cichy, G. Roig, Unveiling functions of the visual cortex 17 
using task-specific deep neural networks. PLoS Comput. Biol. 17, e1009267 (2021). 18 

19.  A. Harel, D. Kravitz, C. I. Baker, Beyond perceptual expertise: revisiting the neural 19 
substrates of expert object recognition. Front. Hum. Neurosci. 7, 885 (2013). 20 

20.  N. Kriegeskorte, et al., Matching categorical object representations in inferior temporal 21 
cortex of man and monkey. Neuron 60, 1126–1141 (2008). 22 

21.  N. Kriegeskorte, R. A. Kievit, Representational geometry: integrating cognition, 23 
computation, and the brain. Trends Cogn. Sci. 17, 401–412 (8/2013). 24 

22.  I. Charest, R. A. Kievit, T. W. Schmitz, D. Deca, N. Kriegeskorte, Unique semantic 25 
space in the brain of each beholder predicts perceived similarity. Proceedings of the National 26 
Academy of Sciences 111, 14565–14570 (2014). 27 

23.  N. Kriegeskorte, J. Diedrichsen, Peeling the Onion of Brain Representations. Annu. 28 
Rev. Neurosci. 42, 407–432 (2019). 29 

24.  B. Duchaine, K. Nakayama, The Cambridge Face Memory Test: Results for 30 
neurologically intact individuals and an investigation of its validity using inverted face stimuli 31 
and …. Neuropsychologia (2006). 32 

25.  S. Bentin, T. Allison, A. Puce, E. Perez, G. McCarthy, Electrophysiological studies of 33 
face perception in humans. J. Cogn. Neurosci. 8 (1996). 34 

26.  B. Rossion, C. Jacques, The N170: Understanding the time course of face perception in 35 

ACCEPTED M
ANUSCRIP

T

D
ow

nloaded from
 https://academ

ic.oup.com
/pnasnexus/advance-article/doi/10.1093/pnasnexus/pgae095/7616957 by U

niversity of Fribourg user on 18 M
arch 2024



 

16 
 

the human brain. The Oxford handbook of event-related potential components. 641, 115–141 1 
(2012). 2 

27.  J. J. S. Barton, S. L. Corrow, The problem of being bad at faces. Neuropsychologia 89, 3 
119–124 (2016). 4 

28.  A. K. Bobak, B. A. Parris, N. J. Gregory, R. J. Bennetts, S. Bate, Eye-Movement 5 
Strategies in Developmental Prosopagnosia and “Super” Face Recognition. Quarterly Journal 6 
of Experimental Psychology 70, 201–217 (2017). 7 

29.  G. Rosenthal, et al., Altered topology of neural circuits in congenital prosopagnosia. 8 
Elife 6 (2017). 9 

30.  R. K. Hendel, R. Starrfelt, C. Gerlach, The good, the bad, and the average: 10 
Characterizing the relationship between face and object processing across the face recognition 11 
spectrum. Neuropsychologia 124, 274–284 (2019). 12 

31.  E. K. Vogel, A. W. McCollough, M. G. Machizawa, Neural measures reveal individual 13 
differences in controlling access to working memory. Nature 438, 500–503 (2005). 14 

32.  E. A. Maguire, E. R. Valentine, J. M. Wilding, N. Kapur, Routes to remembering: the 15 
brains behind superior memory. Nat. Neurosci. 6, 90–95 (2003). 16 

33.  J. N. Zadelaar, et al., Are individual differences quantitative or qualitative? An integrated 17 
behavioral and fMRI MIMIC approach. Neuroimage 202, 116058 (2019). 18 

34.  C. J. Price, K. J. Friston, Degeneracy and cognitive anatomy. Trends Cogn. Sci. 6, 416–19 
421 (2002). 20 

35.  A. J. Anderson, et al., Decoding individual identity from brain activity elicited in 21 
imagining common experiences. Nat. Commun. 11, 5916 (2020). 22 

36.  A. Rokem, K. Kay, Fractional ridge regression: a fast, interpretable reparameterization 23 
of ridge regression. Gigascience 9 (2020). 24 

37.  J. McDermott, P. H. Schiller, J. L. Gallant, Spatial frequency and orientation tuning 25 
dynamics in area V1. Proceedings of the (2002). 26 

38.  V. A. Lamme, P. R. Roelfsema, The distinct modes of vision offered by feedforward and 27 
recurrent processing. Trends Neurosci. 23, 571–579 (2000). 28 

39.  N. Kriegeskorte, M. Mur, P. Bandettini, Representational similarity analysis - connecting 29 
the branches of systems neuroscience. Front. Syst. Neurosci. 2, 4 (2008). 30 

40.  A. Krizhevsky, I. Sutskever, G. E. Hinton, “ImageNet Classification with Deep 31 
Convolutional Neural Networks” in Advances in Neural Information Processing Systems 25, F. 32 
Pereira, C. J. C. Burges, L. Bottou, K. Q. Weinberger, Eds. (Curran Associates, Inc., 2012), pp. 33 
1097–1105. 34 

ACCEPTED M
ANUSCRIP

T

D
ow

nloaded from
 https://academ

ic.oup.com
/pnasnexus/advance-article/doi/10.1093/pnasnexus/pgae095/7616957 by U

niversity of Fribourg user on 18 M
arch 2024



 

17 
 

41.  K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image 1 
Recognition. arXiv [cs.CV] (2014). 2 

42.  U. Güçlü, M. A. J. van Gerven, Deep Neural Networks Reveal a Gradient in the 3 
Complexity of Neural Representations across the Ventral Stream. J. Neurosci. 35, 10005–4 
10014 (2015). 5 

43.  T. A. Carlson, D. A. Tovar, A. Alink, N. Kriegeskorte, Representational dynamics of 6 
object vision: The first 1000 ms. J. Vis. 13, 1–1 (2013). 7 

44.  R. M. Cichy, D. Pantazis, A. Oliva, Resolving human object recognition in space and 8 
time. Nat. Neurosci. 17, 455–462 (2014). 9 

45.  R. A. A. Ince, et al., A statistical framework for neuroimaging data analysis based on 10 
mutual information estimated via a gaussian copula. Hum. Brain Mapp. 38, 1541–1573 (2017). 11 

46.  B. Long, C.-P. Yu, T. Konkle, Mid-level visual features underlie the high-level 12 
categorical organization of the ventral stream. Proc. Natl. Acad. Sci. U. S. A. 115, E9015–13 
E9024 (2018). 14 

47.  N. M. Blauch, M. Behrmann, D. C. Plaut, Computational insights into human perceptual 15 
expertise for familiar and unfamiliar face recognition. Cognition 208, 104341 (2021). 16 

48.  N. Abudarham, I. Grosbard, G. Yovel, Face Recognition Depends on Specialized 17 
Mechanisms Tuned to View-Invariant Facial Features: Insights from Deep Neural Networks 18 
Optimized for Face or Object Recognition. Cogn. Sci. 45, e13031 (2021). 19 

49.  A. J. O’Toole, C. D. Castillo, Face Recognition by Humans and Machines: Three 20 
Fundamental Advances from Deep Learning. Annu Rev Vis Sci 7, 543–570 (2021). 21 

50.  O. Parkhi, A. Vedaldi, A. Zisserman, Deep face recognition. BMVC 2015 - Proceedings 22 
of the British Machine Vision Conference 2015 (2015) (September 2, 2023). 23 

51.  D. Cer, et al., Universal Sentence Encoder. arXiv [cs.CL] (2018). 24 

52.  R. M. Cichy, N. Kriegeskorte, K. M. Jozwik, J. J. F. van den Bosch, I. Charest, The 25 
spatiotemporal neural dynamics underlying perceived similarity for real-world objects. 26 
Neuroimage 194, 12–24 (2019). 27 

53.  M. Mur, et al., Human Object-Similarity Judgments Reflect and Transcend the Primate-28 
IT Object Representation. Front. Psychol. 4, 128 (2013). 29 

54.  M. N. Hebart, B. B. Bankson, A. Harel, C. I. Baker, R. M. Cichy, The representational 30 
dynamics of task and object processing in humans. eLife 7 (2018). 31 

55.  J. Geskin, M. Behrmann, Congenital prosopagnosia without object agnosia? A literature 32 
review. Cogn. Neuropsychol. 35, 4–54 (2018). 33 

56.  A. K. Bobak, R. J. Bennetts, B. A. Parris, A. Jansari, S. Bate, An in -depth cognitive 34 

ACCEPTED M
ANUSCRIP

T

D
ow

nloaded from
 https://academ

ic.oup.com
/pnasnexus/advance-article/doi/10.1093/pnasnexus/pgae095/7616957 by U

niversity of Fribourg user on 18 M
arch 2024



 

18 
 

examination of individuals with superior face recognition skills. Cortex 82, 48–62 (2016). 1 

57.  J. J. S. Barton, A. Albonico, T. Susilo, B. Duchaine, S. L. Corrow, Object recognition in 2 
acquired and developmental prosopagnosia. Cognitive Neuropsychology 36, 54–84 (2019). 3 

58.  B. Duchaine, L. Germine, K. Nakayama, Family resemblance: ten family members with 4 
prosopagnosia and within-class object agnosia. Cogn. Neuropsychol. 24, 419–430 (2007). 5 

59.  Y. Gabay, E. Dundas, D. Plaut, M. Behrmann, Atypical perceptual processing of faces 6 
in developmental dyslexia. Brain Lang. 173, 41–51 (2017). 7 

60.  G. Jiahui, H. Yang, B. Duchaine, Developmental prosopagnosics have widespread 8 
selectivity reductions across category-selective visual cortex. Proc. Natl. Acad. Sci. U. S. A. 9 
115, E6418–E6427 (2018). 10 

61.  G. Avidan, U. Hasson, R. Malach, M. Behrmann, Detailed Exploration of Face-related 11 
Processing in Congenital Prosopagnosia: 2. Functional Neuroimaging Findings. Journal of 12 
Cognitive Neuroscience 17, 1150–1167 (2005). 13 

62.  M. Behrmann, D. C. Plaut, Distributed circuits, not circumscribed centers, mediate 14 
visual recognition. Trends Cogn. Sci. 17, 210–219 (2013). 15 

63.  B. C. Duchaine, G. Yovel, E. J. Butterworth, K. Nakayama, Prosopagnosia as an 16 
impairment to face-specific mechanisms: Elimination of the alternative hypotheses in a 17 
developmental case. Cogn. Neuropsychol. 23, 714–747 (2006). 18 

64.  N. Furl, L. Garrido, R. J. Dolan, J. Driver, B. Duchaine, Fusiform gyrus face selectivity 19 
relates to individual differences in facial recognition ability. J. Cogn. Neurosci. 23, 1723–1740 20 
(2011). 21 

65.  J. B. Wilmer, et al., Capturing specific abilities as a window into human individuality: the 22 
example of face recognition. Cogn. Neuropsychol. 29, 360–392 (2012). 23 

66.  S.-M. Khaligh-Razavi, N. Kriegeskorte, Deep supervised, but not unsupervised, models 24 
may explain IT cortical representation. PLoS Comput. Biol. 10, e1003915 (2014). 25 

67.  G. Jiahui, et al., Modeling naturalistic face processing in humans with deep 26 
convolutional neural networks https:/doi.org/10.1101/2021.11.17.469009. 27 

68.  S. Grossman, et al., Convergent evolution of face spaces across human face-selective 28 
neuronal groups and deep convolutional networks. Nat. Commun. 10, 4934 (2019). 29 

69.  M. van Herten, H. H. J. Kolk, D. J. Chwilla, An ERP study of P600 effects elicited by 30 
semantic anomalies. Brain Res. Cogn. Brain Res. 22, 241–255 (2005). 31 

70.  W. Shen, N. Fiori-Duharcourt, F. Isel, Functional significance of the semantic P600: 32 
evidence from the event-related brain potential source localization. Neuroreport 27, 548–558 33 
(2016). 34 

ACCEPTED M
ANUSCRIP

T

D
ow

nloaded from
 https://academ

ic.oup.com
/pnasnexus/advance-article/doi/10.1093/pnasnexus/pgae095/7616957 by U

niversity of Fribourg user on 18 M
arch 2024



 

19 
 

71.  M. Eimer, A. Gosling, B. Duchaine, Electrophysiological markers of covert face 1 
recognition in developmental prosopagnosia. Brain 135, 542–554 (2012). 2 

72.  S. F. Popham, et al., Visual and linguistic semantic representations are aligned at the 3 
border of human visual cortex. Nature Neuroscience 24, 1628–1636 (2021). 4 

73.  L. Fernandino, J.-Q. Tong, L. L. Conant, C. J. Humphries, J. R. Binder, Decoding the 5 
information structure underlying the neural representation of concepts. Proc. Natl. Acad. Sci. 6 
U. S. A. 119 (2022). 7 

74.  S. L. Frisby, A. D. Halai, C. R. Cox, M. A. Lambon Ralph, T. T. Rogers, Decoding 8 
semantic representations in mind and brain. Trends Cogn. Sci. (2023) 9 
https:/doi.org/10.1016/j.tics.2022.12.006. 10 

75.  V. Bruce, A. Young, Understanding face recognition. Br. J. Psychol. 77 ( Pt 3), 305–327 11 
(1986). 12 

76.  D. Pitcher, V. Walsh, B. Duchaine, The role of the occipital face area in the cortical face 13 
perception network. Exp. Brain Res. 209, 481–493 (2011). 14 

77.  J. Tardif, et al., Use of face information varies systematically from developmental 15 
prosopagnosics to super-recognizers. Psychol. Sci. 30, 300–308 (2019). 16 

78.  D. Anaki, S. Bentin, Familiarity effects on categorization levels of faces and objects. 17 
Cognition 111, 144–149 (2009). 18 

79.  I. Gauthier, A. W. Anderson, M. J. Tarr, P. Skudlarski, J. C. Gore, Levels of 19 
categorization in visual recognition studied using functional magnetic resonance imaging. Curr. 20 
Biol. 7, 645–651 (1997). 21 

80.  S. Faghel-Soubeyrand, N. Dupuis-Roy, F. Gosselin, Inducing the use of right eye 22 
enhances face-sex categorization performance. J. Exp. Psychol. Gen. 148, 1834–1841 (2019). 23 

81.  J. P. Davis, K. Lander, R. Evans, A. Jansari, Investigating Predictors of Superior Face 24 
Recognition Ability in Police Super-recognisers: Superior face recognisers. Appl. Cogn. 25 
Psychol. 30, 827–840 (2016). 26 

82.  M. C. Fysh, L. Stacchi, M. Ramon, Differences between and within individuals, and 27 
subprocesses of face cognition: implications for theory, research and personnel selection. R 28 
Soc Open Sci 7, 200233 (2020). 29 

83.  S. Faghel-Soubeyrand, et al., The two-faces of recognition ability: better face 30 
recognizers extract different physical content from left and right sides of face stimuli. J. Vis. 19, 31 
136d–136d (2019). 32 

84.  O. Langner, et al., Presentation and validation of the Radboud Faces Database. 33 
Cognition and Emotion 24, 1377–1388 (2010). 34 

85.  R. Kiani, H. Esteky, K. Mirpour, K. Tanaka, Object category structure in response 35 

ACCEPTED M
ANUSCRIP

T

D
ow

nloaded from
 https://academ

ic.oup.com
/pnasnexus/advance-article/doi/10.1093/pnasnexus/pgae095/7616957 by U

niversity of Fribourg user on 18 M
arch 2024



 

20 
 

patterns of neuronal population in monkey inferior temporal cortex. J. Neurophysiol. 97, 4296–1 
309 (2007). 2 

86.  V. Willenbockel, et al., Controlling low-level image properties: the SHINE toolbox. 3 
Behav. Res. Methods 42, 671–684 (2010). 4 

87.  N. Kriegeskorte, M. Mur, N. Kriegeskorte, G. Kreiman, Representational similarity 5 
analysis of object population codes in humans, monkeys, and models. Visual Population 6 
Codes: Towards a Common Multivariate Framework for Cell Recording and Functional 7 
Imaging (2012). 8 

88.  R. Oostenveld, P. Fries, E. Maris, J.-M. Schoffelen, FieldTrip: Open source software for 9 
advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput. Intell. 10 
Neurosci. 2011, 156869 (2011). 11 

89.  M. S. Treder, MVPA-Light: A Classification and Regression Toolbox for Multi-12 
Dimensional Data. Front. Neurosci. 14, 289 (2020). 13 

90.  T. Grootswagers, S. G. Wardle, T. A. Carlson, Decoding Dynamic Brain Patterns from 14 
Evoked Responses: A Tutorial on Multivariate Pattern Analysis Applied to Time Series 15 
Neuroimaging Data. J. Cogn. Neurosci. 29, 677–697 (2017). 16 

91.  R. M. Cichy, A. Oliva, A M/EEG-fMRI Fusion Primer: Resolving Human Brain 17 
Responses in Space and Time. Neuron (2020) https:/doi.org/10.1016/j.neuron.2020.07.001. 18 

92.  M. Graumann, C. Ciuffi, K. Dwivedi, G. Roig, R. M. Cichy, The spatiotemporal neural 19 
dynamics of object location representations in the human brain. Nat Hum Behav (2022) 20 
https:/doi.org/10.1038/s41562-022-01302-0. 21 

93.  J. Liu, et al., Transformative neural representations support long-term episodic memory. 22 
Sci Adv 7, eabg9715 (2021). 23 

94.  S. Xie, D. Kaiser, R. M. Cichy, Visual Imagery and Perception Share Neural 24 
Representations in the Alpha Frequency Band. Curr. Biol. 30, 3062 (2020). 25 

 26 
Figure captions 27 
 28 
Figure 1. Experimental procedure. a) The histogram shows the Cambridge Face Memory Test long-29 
form (CFMT+, (8)) scores of super-recognisers (yellow bars), typical recognisers (black bars), and an 30 
additional 332 neurotypical observers from three independent studies for comparison (77, 82, 83). b) 31 
Participants engaged in a one-back task while their brain activity was recorded with high-density 32 
electroencephalography. The objects depicted in the stimuli belonged to various categories, such as 33 
faces, objects, and scenes. Note that the face drawings shown here are an anonymised substitute to 34 
the experimental face stimuli presented to our participants.  35 
 36 
Figure 2. Decoding interindividual recognition ability variations from EEG activity. a) Trial-by-trial 37 
group-membership predictions (super-recogniser or typical recogniser) were computed from EEG 38 

ACCEPTED M
ANUSCRIP

T

D
ow

nloaded from
 https://academ

ic.oup.com
/pnasnexus/advance-article/doi/10.1093/pnasnexus/pgae095/7616957 by U

niversity of Fribourg user on 18 M
arch 2024



 

21 
 

patterns, for each 4-ms interval, while participants processed face (blue trace) or non-face stimuli (grey 1 
trace). Significant decoding performance occurred as early as 65 ms, peaked in the N170 window, and 2 
lasted for the remainder of the EEG epochs (p<.001). b) Topographies were obtained using  searchlight 3 
decoding analyses, either concatenating all time points (left topographies) or for selected time-windows 4 
(right topographies). Concatenating all time points resulted in peak classification performance of 77.3% 5 
over right occipito-temporal electrodes for face and 77.5% over right occipito-temporal electrodes for 6 
non-face conditions. In the N170 window, we observed a peak classification performance of 74.8% over 7 
right-temporal electrodes for face, and 72.1% over left-temporal electrodes for non-face conditions. c) 8 
We decoded the CFMT+ scores of the typical recognisers using fractional ridge regression. This 9 
yielded similar results with significant decoding as early as 75 ms, peaking around the N170 time 10 
window (peak-rhoface=.4149, peak-rhonon-face=.4899), and lasted for the remainder of the EEG epochs 11 
(p<.01, 1K permutations, 10 repetitions). 12 
 13 
Figure 3. Comparison of super- and typical-recogniser brain representations with those of 14 
artificial neural networks of visual and semantic processing. a) Representational dissimilarity 15 
matrices (RDM) were computed from convolutional neural networks (CNN; (40, 41) of vision, human 16 
brain activity, and a deep neural network of caption classification and sentence semantics (51). To 17 
characterise the CNN RDMs, we computed the pairwise similarity between unit activation patterns for 18 
each image independently in each CNN layer. The caption-level RDMs were derived from human 19 
caption descriptions of the images transformed into sentence embeddings. Brain RDMs were computed 20 
using cross-validated decoding performance between the EEG topographies from each pair of stimuli at 21 
every 4 ms time-point. Mutual information (45) between the model RDMs and the brain RDMs was 22 
assessed, for every participant, at each 4 ms step from stimulus onset. b) Mutual information between 23 
brain RDMs and AlexNet RDMs (removing shared mutual information between brain and semantic 24 
model) is shown for typical- (grey solid curve) and super-recognisers (pink solid curve). We found 25 
greater similarity with mid-level visual representations (layer 4 and 5 shown, but similar results were 26 
found for mid-layers of VGG16, another popular CNN model; see Figure S5) in the brains of super-27 
recognisers (black line indicates significant contrasts, p<.05, cluster-corrected) between 133 ms and 28 
165 ms. Similar results were observed when comparing brains and CNN models without removing the 29 
shared mutual information between brains and the semantic (caption-level) model (Figure S5). c) 30 
Mutual Information with the semantic model (excluding shared mutual information between brain and 31 
AlexNet) differed for typical- and super-recognisers in a later time window centred around 650 ms (cyan 32 
curve; super > typical, p < .05, cluster-corrected). Again, similar results were observed when comparing 33 
brains and the semantic model without removing the shared mutual information between the brain and 34 
CNN model (see Figure S8).  35 
Figure 4. Linking neural representations with behavioural representations for shape, function, 36 
and semantic similarity judgements. a) Mutual information between brain RDMs and the mean RDM 37 
built from shape similarity judgements (first column) and sentence meaning similarity judgements 38 
(second column) is shown for typical- (grey curves) and super-recognisers (coloured curves). Greater 39 
similarity with shape information in the brains of super-recognisers (p<.01, uncorrected; p-correctedMI = 40 
.1259) and greater similarity with sentence meaning information for super-recognisers (p<.01, 41 
uncorrected; p-correctedMI = 0.0819) only reached significance before cluster corrections. The shaded 42 
areas of all curves represent the standard error. b) Conditional Mutual information between brain RDMs 43 
and the mean RDM built from similarity judgements of shape & of sentence captions meaning 44 
(removing shared mutual information between brain and sentence caption meaning RDM for shape 45 
similarity, and vice versa) is shown in typical- and super-recognisers. We found greater similarity with 46 
sentence meaning in the brains of super-recognisers between 635 ms and 787 ms (black line indicates 47 
significant contrasts, p<.05, cluster-corrected), in agreement with our comparisons with the artificial 48 
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semantic model (fig. 3b). Greater similarity with shape information in the brains of super-recognisers 1 
only reached significance before cluster corrections (p<01, uncorrected; pcorrectedCMI = .2098). 2 
 3 

 4 

Figure 1 5 
345x114 mm ( x  DPI) 6 

 7 

ACCEPTED M
ANUSCRIP

T

D
ow

nloaded from
 https://academ

ic.oup.com
/pnasnexus/advance-article/doi/10.1093/pnasnexus/pgae095/7616957 by U

niversity of Fribourg user on 18 M
arch 2024



 

23 
 

 1 

Figure 2 2 
151x219 mm ( x  DPI) 3 

ACCEPTED M
ANUSCRIP

T

D
ow

nloaded from
 https://academ

ic.oup.com
/pnasnexus/advance-article/doi/10.1093/pnasnexus/pgae095/7616957 by U

niversity of Fribourg user on 18 M
arch 2024



 

24 
 

 1 

Figure 3 2 
173x201 mm ( x  DPI) 3 

  4 

ACCEPTED M
ANUSCRIP

T

D
ow

nloaded from
 https://academ

ic.oup.com
/pnasnexus/advance-article/doi/10.1093/pnasnexus/pgae095/7616957 by U

niversity of Fribourg user on 18 M
arch 2024



 

25 
 

 1 

Figure 4 2 
176x194 mm ( x  DPI) 3 

ACCEPTED M
ANUSCRIP

T

D
ow

nloaded from
 https://academ

ic.oup.com
/pnasnexus/advance-article/doi/10.1093/pnasnexus/pgae095/7616957 by U

niversity of Fribourg user on 18 M
arch 2024


