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Summary

This doctoral dissertation is concerned with the study of the behaviour of models of Statistical
mechanics far away or near criticality. We essentially focus on two instances of such models,
namely the FK percolation and the Potts model. We investigate two theories developed
to study these models in such non-critical regimes: the phase separation theory and the
Ornstein–Zernike theory. While the former is concerned with the study of the coexistence of
distinct phases in supercritical spin models, the latter is a tool allowing to understand the fine
behaviour of correlation functions for models in which exponential decay of correlation hold;
in the case of FK percolation, this is the whole subcritical regime.

The thesis contains three separate works providing original research contributions to these
two problems.

The first contribution — based on a research article in collaboration with Romain Panis
— is concerned with the study of the phase separation problem for random walks. Indeed,
this work is devoted to the study of the behaviour of a (1+1)-dimensional model of random
walk conditioned to enclose an area of order N2. Such a conditioning enforces a globally
concave trajectory. We study the local deviations of the walk from its convex hull. To this
end, we introduce two quantities — the mean local roughness MeanLR and the mean facet
length MeanFL — measuring the typical transversal and longitudinal fluctuations around
the boundary of the convex hull of the random walk. Our main result is that MeanFL is of
order N2/3 and MeanLR is of order N1/3. This model is intended to be a toy model for the
interface of a two-dimensional statistical mechanics model (such as the Ising model) in the
phase separation regime — we discuss this issue at the end of this work

Our second contribution regards the study of a finite system of long clusters of subcritical
2-dimensional FK-percolation with q ≥ 1, conditioned on mutual avoidance. We show
that the diffusive scaling limit of such a system is given by a system of Brownian bridges
conditioned not to intersect: the so-called Brownian watermelon. Moreover, we give an
estimate of the probability that two sets of r points at distance n of each other are connected
by distinct clusters. As a byproduct, we obtain the asymptotics of the probability of the
occurrence of a large finite cluster in a supercritical random-cluster model. The proofs
heavily relies on Ornstein–Zernike theory for non-independent systems of interfaces.

Finally the last contribution of this doctoral dissertation — based on a research article to be
written in collaboration with Ioan Manolescu — regards an extension of the Ornstein–Zernike
theory to the near-critical regime of FK percolation. In particular, the formula shown to drive
the behaviour of the two-point correlation function of the model is uniform in p < pc. The
analysis is carried out by studying the renewal properties of a subcritical percolation cluster,
at the scale of the correlation length. In particular, we show that the uniform probability of
crossing boxes at the scale of the correlation length is sufficient to obtain the required mixing
properties of the underlying renewal process. We also derive the Brownian asymptotics for
long subcritical clusters, uniformly in p.



Cette thèse de doctorat se propose d’étudier le comportement de certain modèles issus de la
mécanique statistique, dans leurs régimes non critiques ou presque critiques. En particulier,
nous nous concentrons sur l’étude de deux modèles classiques, à savoir la FK percolation
et le modèle de Potts. Nous étudions deux théories développées dans le but d’étudier ces
modèles hors de leur régime critique : la théorie de la séparation des phases et la théorie
d’Ornstein–Zernike. La première concerne l’étude de la coexistence de phases distinctes
dans les modèles de spins surcritiques, tandis que la seconde permet de comprendre le
comportement précis des fonctions de corrélations des modèles dans lesquels ces dernières
décroissent exponentiellement.

Cette thèse contient trois contributions distinctes et originales à ces deux problèmes.

La première — basée sur un article de recherche co-écrit avec Romain Panis — concerne
l’étude du problème de la séparation des phases pour les marches aléatoires. En effet, ce
travail est consacré à l’étude du comportement d’un modèle de marche aléatoire (1+1)-
dimensionnelle conditionnée à capturer une aire d’ordre N2. Ce conditionnement impose
une trajectoire globalement concave. Nous étudions les déviations locales de la marche
par rapport à son enveloppe convexe. Dans ce but, nous introduisons deux quantités — la
rugosité locale moyenne MeanLR et la longueur moyenne des facettes MeanFL — mesurant
les fluctuations transversales et longitudinales typiques autour de la frontière de l’enveloppe
convexe de la marche aléatoire. Notre résultat principal est que MeanFL est d’ordre N2/3

et MeanLR est d’ordre N1/3. Ce modèle est conçu pour servir de modèle simplifié pour
l’interface obtenue dans le modèle d’Ising dans le régime de séparation des phases.

Notre seconde contribution concerne l’étude d’un système fini de longs amas de percolation
FK sous-critique bidimensionnelle avec q ≥ 1, conditionnées à s’éviter mutuellement. Nous
montrons que la limite d’échelle diffusive d’un tel système est donnée par un système de
ponts browniens conditionnés à ne pas s’intersecter : la pastèque brownienne. De plus,
nous fournissons une estimation de la probabilité que deux ensembles de r points distants
de n soient connectés par des amas distincts. En passant, nous obtenons également le
comportement asymptotique de la probabilité d’occurrence d’un grand amas fini pour la FK
percolation surcritique. Les preuves reposent fortement sur la théorie d’Ornstein–Zernike
pour les systèmes d’interfaces non-indépendants.

Enfin, la dernière contribution de cette thèse de doctorat — basée sur un futur article de
recherche en collaboration avec Ioan Manolescu — concerne une extension de la théorie
d’Ornstein–Zernike au régime presque-critique de la percolation FK. En particulier, la
formule régissant le comportement de la fonction de corrélation à deux points du modèle
obtenue dans ce travail est uniforme en p < pc. L’analyse est réalisée en étudiant les propriétés
de renouvellement d’un amas de percolation sous-critique, à l’échelle de la longueur de
corrélation. En particulier, nous montrons que la probabilité uniforme de traverser des
boı̂tes à l’échelle de la longueur de corrélation est suffisante pour obtenir les propriétés de
mélange requises du processus de renouvellement sous-jacent. Nous dérivons également les
asymptotiques browniennes pour les longs amas sous-critiques, uniformément en p.





À mon père.
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Chapter 1

Introduction: the phase separation prob-
lem and the Ornstein–Zernike theory

What happens when a small quantity of oil is mixed in some water? Reading that question in
the very beginning of a PhD dissertation in Mathematics might put a slight smile on some
faces (at least we hope it does!). Depending on who you ask it to, this question may have
several different answers. If you are discussing with a child, they would probably tell you
after a moment of hesitation that the oil creates a round droplet inside the water. If you talk
to a physicist, however, you would probably get a more sophisticated answer such as: “the oil
creates a droplet which adopts a shape minimising its surface energy”. Finally if you ask a
mathematician, well, you might end up embarking on a 4-years journey, ultimately leading to
a doctoral dissertation such as the present one.

More precisely, consider the following thought experiment, introduced in [32]. Pour a very
small quantity of oil inside a jar of water. As one knows, oil and water tend to repel each
other. However, at very small densities, the oil will be soluble in the water up to some
critical density ρc above which it is not soluble anymore. Moreover, it is known that the
critical density increases with the temperature T : the larger T is, the larger ρc will be. The
experiment proposed by Cerf and Pisztora is thus the following: pour a small quantity of
oil in the water, such that its density ρ is just slightly smaller than ρc. The oil is then totally
dissolved in the water. Once the mixture is stabilised, decrease T , in such a way that ρc drops
below ρ. One thus expects to see a condensation phenomenon: all of a sudden, a visible
droplet will appear in the mixture.

On the other hand, it is now widely acknowledged that the behaviour of many physical
systems is intrinsically random, at least at very small (atomic or microscopic) scales. One
might think for instance of the theory of Quantum mechanics, but most importantly of the
development of so-called Statistical mechanics. Very roughly speaking, the purpose of
this approach is trying to understand how the large scale properties of a physical system
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can be understood from its microscopic properties. For instance, assume that one has n
molecules interacting in a finite volume. If n = 2, then one might expect to rigorously
compute the way in which those particles evolve in the space, as the interaction between them
is known. If n is slightly larger, then the problem already starts to be very complicated to
solve rigorously1. Of course, if n is of realistic physical order, it should be taken extremely
large if one wants to describe a physical phenomenon at the visible scale (coming back
to our previous discussion, there are roughly n ≈ 1026 molecules that interact together),
making any dream of an exact computation totally hopeless. However, it has progressively
been understood during the last century that considering that the molecules adopt a random
configuration in which the probability of a given configuration depends on the total energy of
the configuration provides an accurate description of the physical system, in the sense that
large-scale properties of the system can be derived by probabilistic techniques. To mention
just a few examples, this approach has revealed itself very fruitful in the understanding of
ferromagnetism, supraconductivity, turbulence, phase transitions, and many other physical
phenomena. Our goal is not to provide a comprehensive history of Statistical mechanics;
however it would be almost criminal not to mention the names of James C. Maxwell, Ludwig
Boltzmann and Josiah W. Gibbs as the three founding fathers of this theory.

Coming back to our original problem, the question driving this dissertation is then the
following: how does the previously described condensation phenomenon fit into the conceptual
framework provided by the rigorous Statistical mechanics theory? This turns out to be a
pretty deep and mesmerizing question, and its investigation has given rise to very fruitful
methods and results that shall be described in more detail later on in this introduction. For
the mathematical side of the story, it would also probably be lèse-majesté not to mention the
names of Roland D. Dobrushin, Roman Kotecký and Senya Shlosman as the first ones to
provide a rigorous and comprehensive treatment of that question in two dimensions, in the
context of the Ising model.

It is now time to leave the physical realm, as this dissertation will mostly be concerned with
the study of this problem in two dimensions. As will be described later, the shape of the oil
droplet in that case is well-understood. It adopts a deterministic (i.e., non-random) profile,
that can be described as the solution of a variational problem in two dimensions. However,
imagine that one now turns into a tiny ant2 walking on the boundary of the droplet, so small
that it does not feel the curvature of the droplet at all. At this scale, it seems reasonable
to expect that the intrinsic randomness of the model starts to play a role, and that the ant
might actually walk on a random curve of the plane. If it were indeed the case, what can
be said about the distribution of this random curve? Can some interesting scaling limits be

1Think about the infamous three body problem, in which three massive point masses orbit each other in space.
The resulting system of equations does not have a closed-form solution and is known to be chaotic in most cases.

2Of course, this is not really a good point of view, for at least two different reasons: first, an ant is still formally
a macroscopic entity whose size is comparable to the size of the droplet. Second, an ant could not survive for a
very long time when immersed in a mixture of oil and water. Nevertheless, the idea of being a tiny ant walking
on a random curve is so surprisingly seducing that we decide to keep it anyway.
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1.1. MODELS TO BE CONSIDERED

identified? This dissertation is exactly concerned with this type of questions. It gathers three
different pieces of work related to this topic in the framework of the so-called random-cluster
and directed random walk models.

We will start with an historical review of the problem in the introduction, rigorously prove a
number of well-known properties of the random-cluster model in the second chapter, and the
remaining three chapters are devoted to the research output of this PhD thesis.

1.1 Models to be considered

As this dissertation is concerned with probability measures on graphs, we introduce the
notation and some basic graph-theoretical notions.

1.1.1 Graph theoretical notions and notation

An unoriented graph is a pair of setsG = (V (G), E(G)), where V (G) is referred to as the set
of vertices, and E(G) is some collection of pairs {x, y} where x, y ∈ V (G). The set E(G)
is referred to as the edge set of the graph G, and a given edge {x, y} ∈ E(G) will be denoted
by {xy}. In this dissertation we will mostly be concerned with a special family of graphs,
namely subgraphs of the hypercubic lattice. Fix d ∈ N∗ a positive integer. The hypercubic
lattice is the graph (Zd, E(Zd)), where E(Zd) = {{xy}, x, y ∈ Zd, ∥x − y∥ = 1} (∥ · ∥
denotes the standard Euclidean distance on Rd). In what follows, we will often make the
slight notational abuse of writing Zd instead of (Zd, E(Zd)) to refer to the lattice itself, but it
will be clear depending on the context.

In our context, percolation theory studies the connectivity properties of a model of random
subgraphs of the hypercubic lattice. A subgraph G′ = (V (G′), E(G′)) of G is defined as a
pair consisting of a subset of V (G) and a set of edges between vertices of V (G′). In what
follows, the vertex-set will almost always taken to be equal to Zd itself: we will mostly
consider subgraphs of Zd obtained by randomly removing some edge of the hypercubic
lattice.

The following notion of connectivity will be thoroughly used in what follows: let x, y ∈ V (G).
We say that x and y are connected in G if there exists an integer n ≥ 0, a sequence
of vertices x0, . . . , xn+1 satisfying x0 = x, xn+1 = y and {xixi+1} ∈ V (G) for any
i ∈ {0, . . . , n} . In that case, we will write {x ←→ y}, and the sequence of edges
({x0x1}, {x1x2}, . . . , {xnxn+1}) will be referred to as an edge-path (or simply path) from
x to y. If x and y are not connected in the graph G, we will write {x ↚→ y}. Moreover, we
will say that x ∈ V (G) percolates if there exists an infinite self-avoiding edge-path starting
at x or equivalently if there exists an infinite sequence of vertices (x0, x1, . . . ) such that
x0 = x, for any i ≥ 0, {xixi+1} ∈ E(G) and for any 0 ≤ i ̸= j, xi ̸= xj). In that case we
will write {x←→∞}.
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1.1. MODELS TO BE CONSIDERED

If G′ = (V ′, E′) is a subgraph of G, we define its inner boundary, denoted by ∂G′ as
follows

∂G′ = {x ∈ V ′,∃y ∈ V (G), {xy} ∈ E(G) \ E′},

and its outer boundary, denoted by ∂extG′ as

∂extG′ = {x ∈ V (G) \ V ′,∃y ∈ V ′, {xy} ∈ E(G)}.

We introduce the following family of subsets of Zd that we call boxes. For n ≥ 1, define
Λn := {−n, . . . , n}d (we make no reference to the dimension d as it will always be fixed
and no confusion will be possible in what follows). Observe that ∂Λn = Λn \ Λn−1. Finally
if x ∈ Zd, we write Λn(x) := x+ Λn.

1.1.2 The q-states Potts model

Figure 1.1: Three simulations of the Potts model with q = 4, sampled via Glauber dynamics.
From left to right, β < βc, β ≈ βc, β > βc.

Definition of the measure

Fix an integer q ≥ 2. The q-states Potts model, named after the Australian mathematician
Renfrey Potts, was introduced [105] in 1952 as a generalisation of the Ising model. It is
an important protagonist of the modern Statistical mechanics theory, as it displays a rich
behaviour despite its quite simple definition.

We chose to restrict our setting to the Potts model on the hypercubic lattice, even though the
model has been extensively studied in different types of graphs (e.g. trees). Fix a dimension
d ≥ 1 and some finite subgraph G ⊂ Zd. The q-states Potts measure is a probability measure
on the set of functions σ : V (G)→ {1, . . . , q}, where V (G) denotes the set of vertices of
the graph G, and the numbers 1, . . . , q are interpreted as different colours. We will refer
to such σ as spin configurations on G, and — sticking to usual conventions — will write
σx := σ(x). As often in Statistical mechanics, we start by defining the so-called Hamiltonian
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1.1. MODELS TO BE CONSIDERED

of the model. We fix η a spin configuration on ∂extG, which we will refer to as the boundary
condition. For σ a spin configuration on G, we define

Hη(σ) := −
∑

x,y∈V (G)
x∼y

1σx=σy −
∑

x∈V (G),y/∈V (G)
x∼y

1σx=ηy .

In the previous expression, we say that x ∼ y whenever ∥x− y∥ = 1.3

We fix a parameter β > 0,4 which shall be called the inverse temperature in what follows.
The q-states Potts measure on G is defined by setting for any function F from the set of spin
configurations to R,

µηG,β,q[F ] =
1

ZηG,β,q

∑
σ:V (G)→{1,...,q}

F (σ)e−βH
η(σ),

where ZηG,β,q > 0 is the unique normalization constant ensuring that µηG,β,q[1] = 1. It
is usually referred to as the partition function of the model, and it is an object of crucial
importance in mathematical physics.

Some choices of boundary conditions are classical. Fix j ∈ {1, . . . , q}. We shall refer to the
choice η ≡ j (resp. η ≡ 0 ) as j-monochromatic boundary conditions (resp. free boundary
conditions) and will write the measures as µjG,β,q (resp. µfG,β,q). It is classical, and will be a
consequence of what follows, that with those particular choices of boundary conditions, one
can extend those measures to the whole Zd, by taking limits along sequences of growing
boxes.

Lemma 1.1.1. For any q ∈ N∗ and β > 0, there exist q + 1 measures (not necessarily
distinct) µ1β,q, . . . , µ

q
β,q, µ

f
β,q on {1, . . . , q}V (Zd) such that for any event A depending on a

finite number of spins, for any j ∈ {1, . . . , q},

lim
n→∞

µjΛn,β,q
[A] = µjβ,q[A] and lim

n→∞
µfΛn,β,q[A] = µfβ,q[A].

Those measures are called infinite-volume measures, and the question of determining whether
they are distinct or equal is one of the starting points of the modern Statistical mechanics
theory.

3In this dissertation, we are interested only in the nearest-neighbour Potts model. Of course, one can generalise
the definition of the model by allowing more complex interactions by means of adding a family of coupling
constants {Jxy} in the sum defining the Hamiltonian and summing over all the (x, y) ∈ V (G)2. Our setting
then corresponds to choosing Jxy = 1x∼y .

4The choice β > 0 corresponds to the so-called ferromagnetic Potts model: the measure favours neighbouring
spins to have the same colour. The model could however be defined in a similar way for β < 0 which corresponds
to the antiferromagnetic Potts model. This model is expected to display a very different behaviour than in the
ferromagnetic case; for instance it does not enjoy the positive association property. In this dissertation, we will
be focusing on the ferromagnetic case.
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The phase transition of the Potts model

We now describe one of the salient features of the q-states Potts model: the existence of the
phase transition.

Theorem. Fix q ∈ N∗. There exists βc ∈ (0,+∞) such that

1. For any β < βc, any j ∈ {1, . . . , q}, µjq,β = µfq,β . Moreover,

lim
∥x−y∥→∞

µjq,β[σx = σy] =
1
q .

2. For any β > βc, the q + 1 measures µ1β,q, . . . , µ
q
β,q, µ

f
β,q are distinct. Moreover,

lim
∥x−y∥→∞

µjq,β[σx = σy]− 1
q > 0.

The behaviour of the model will be very different when β < βc, β = βc and β > βc. Those
regimes will be called subcritical, critical and supercritical respectively. Even though this
PhD thesis will be mostly concerned with properties of the model off criticality, we do not
resist gathering a few properties of the critical model in two dimensions, as it displays a
fascinating behaviour.

The phase transition of the planar Potts model

Among the many questions regarding the behaviour of the phase transition in Potts model,
one of the most crucial is the question of continuity of the phase transition. It can be
phrased in different ways; we choose to formulate it in terms of the number of extremal
infinite-volume limit measures at β = βc. For the square lattice, the question has been solved
using percolation methods in a remarkable series of works [53, 50], see also Chapter 2 for a
discussion on the random-cluster model. The statement can be summed up as follows.

Theorem. Let d = 2.

1. When q ∈ [1, 4], there is a unique infinite-volume limit measure at β = βc. For any
j ∈ {1, . . . , q}, µjβc,q = µfβc,q. Moreover,

lim
∥x−y∥→∞

µjβc,q[σx = σy] =
1
q .

2. When q > 4, the measures µ1βc,q, . . . , µ
q
βc,q

, µfβc,q are distinct. Moreover, for any
j ∈ {1, . . . , q},

lim
∥x−y∥→∞

µjβc,q[σx = σy]− 1
q > 0.

We further mention a recent result [65] fully identifying the set of infinite-volume limi
measures of the q-states critical Potts model with q > 4.
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1.1. MODELS TO BE CONSIDERED

Theorem. Let d = 2 and q > 4. Let µ be a Gibbs measure for the critical q-states Potts
model on Z2. Then there exist α0, α1, . . . , αq ≥ 0, with α0 + · · ·+ αq = 1 such that

µ = α0µ
f
βc,q +

q∑
j=1

αjµ
j
βc,q

.

1.1.3 Graphical representations of spin systems: the example of the
Edwards-Sokal coupling

One of the natural important questions in the field of Statistical mechanics is the study of
the behaviour of the so-called correlations functions of spin models. For instance, for any
x ∈ Zd, define Gβ(x) := µ1β,q[σ0 = σx] − 1

q . Understanding the fine behaviour of the
function Gβ is of particular interest, as this function encodes the correlation structure of the
model. One of the main contributions of this PhD thesis is to provide a precise understanding
of the function Gβ in the joint limit ∥x∥ → ∞ and β ↗ βc.

This problem is obviously very difficult to decipher in general. However a crucial tool has
been investigated for more than 50 years now: the so-called graphical representations of spin
models (see for instance the monograph [48]). Instead of studying spin models on the vertex
set of Zd, we now turn to models of random subgraphs of Zd: so-called percolation models.
The idea of graphical representations is to identify correlation functions of the original spin
model with the probabilities of some geometrical events in an adequate percolation model.
The latter being sometimes easier to study, thanks to modern percolation techniques, this
motivates the interest of the study of such models. In what follows, we introduce the main
protagonist of this dissertation: the random-cluster measure. It is one of the most useful
graphical representations of the Potts model and an object of great interest in itself.

The random-cluster model

As done previously for the definition of the Potts measure, we start by defining the model
in finite volume. Fix a dimension d ≥ 1 and a finite subgraph G of Zd. The random-
cluster measure is a probability measure on subgraphs of G. Its state space is given by
ΩG := {0, 1}E(G). For an edge e ∈ E(G) and any percolation configuration ω ∈ ΩG,
we say that e is open if ω(e) = 1 and closed else. The connectivity properties of the
subgraph induced by ω play a crucial role in the definition of the measure. Let x, y ∈ V (G).
We say that x and y are connected in ω if there exists k ≥ 0 and a sequence of vertices
x0 = x, x1, . . . , xk, xk+1 = y such that for any 0 ≤ j ≤ k, ∥xj+1 − xj∥ = 1 and the edge
{xj , xj+1} is open in ω. The maximal connected components for this notion of connectivity
shall be called open clusters of ω.

Like in the Potts model, the boundary conditions will play a crucial role in the definition
of the measure. A boundary condition η is formally defined as a partition of ∂G. To any
boundary condition η and any percolation configuration ω ∈ {0, 1}E(G), one can associate
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the percolation configuration ωη which is obtained by identifying together the vertices of ∂G
that lie in the same set of the partition η. Moreover, we shall almost always consider a special
type of boundary conditions, namely those that are induced by a percolation configuration
outside of G. Indeed, let η be a percolation configuration on Zd \G. Observe that it induces
a boundary condition on ∂G by saying that two vertices of ∂G belong to the same set of the
partition if and only if they are connected in η. In that case, we shall make a slight notational
abuse by identifying the percolation configuration η with the boundary condition it induces
on ∂G, and keeping the notation ωη when η is a percolation configuration on Zd \G.

Let ω be a percolation configuration on G. We define o(ω) to be the total number of open
edges in ω, and call kη(ω) the number of open clusters of the configuration ωη.

Fix two parameters p ∈ [0, 1] and q > 0, and a boundary condition η. The random-cluster
measure on G with parameters p and q and boundary conditions η is defined as follows: for
any percolation configuration ω on G, we set

ϕηG,p,q[ω] =
1

ZηG,p,q

(
p

1− p

)o(ω)
qk

η(ω).

As previously, ZηG,p,q is the partition function of the model, that is, the only constant
guaranteeing that ϕηG,p,q is indeed a probability measure.

Some choices of q are of particular interest: observe that when q = 1, the measure is a
product measure. It can be realized a follows: for each edge open it independently of the
state of the other edges with probability p and close it else. This model is called Bernoulli
percolation and is historically the first model of percolation. In that case, the model is
insensitive to the choice of boundary conditions, and ZG,p,1 = 1. The choice q = 2 is also
relevant, as it can be coupled to the so-called Ising model thanks to the Edwards–Sokal
coupling (see the next subsection). In that case, the model in Z2 is integrable, meaning that
almost all the relevant quantities such as the correlation length, the critical exponents, etc .,
can be explicitly computed.

Two choices of boundary conditions will be particularly relevant: the one corresponding
to η ≡ 0 (resp. η ≡ 1) on Zd \ G will be referred to as the free (resp. wired) boundary
condition and the corresponding random-cluster measure will be denoted by ϕ0G,p,q (resp.
ϕ1G,p,q). For these two choices of boundary conditions, it is classical — and it will be proved
in the next chapter — that the corresponding measures can be extended to the whole Zd when
q ≥ 1.

Lemma 1.1.2. Let d ≥ 1, q ≥ 1 and p ∈ [0, 1]. There exist two measures ϕ0p,q and ϕ1p,q on
{0, 1}E(Zd) such that for any event A depending on a finite number of edges,

lim
n→∞

ϕ0Λn,p,q[A] = ϕ0p,q[A] and lim
n→∞

ϕ1Λn,p,q[A] = ϕ1p,q[A].
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Edwards–Sokal coupling

This section is devoted to the description of the so-called Edwards–Sokal coupling, named
after Robert Edwards and Alan Sokal [55]. This coupling is very useful as it allows to relate
correlations of the Potts model and probabilities of connectivity events in the random cluster
model. The coupling can be described in different ways, starting either with a random-cluster
configuration or a spin configuration. It also needs to be adapted to the boundary conditions
in consideration. Let us describe all the versions of the coupling.

Description of the Edwards–Sokal coupling

From the random-cluster to the Potts model with free boundary condi-
tions. Let q ≥ 2 be an integer, G be a fixed finite graph and let ω ∼ ϕ0G,p,q. Let Uq,C
be a family of independent uniform random variables on {1, . . . , q} indexed by the
family C of open clusters of ω. We set σ to be the spin configuration constructed as
follows. To each cluster C of ω, we assign the colour Uq,C . Then σ ∼ µfG,β,q, with
β := − log(1− p).

From the random-cluster to the Potts model with monochromatic
boundary conditions. Let q ≥ 2 be an integer, j ∈ {1, . . . , q} a fixed colour, G a
fixed finite graph and let ω ∼ ϕ1G,p,q. We construct a spin configuration σ as described
previously, except that every cluster intersecting the boundary of G is automatically
assigned the colour j. Then, σ ∼ µjG,β,q, with β := − log(1− p).

From the Potts model to the random-cluster with free boundary
conditions. Let q ≥ 2 be an integer , β > 0, and G be a fixed finite graph. Sample
a spin configuration σ ∼ µfG,β,q. Set p := 1 − e−β . We construct a percolation
configuration ω as follows: for any edge e = {xy} ∈ E(G), set ω(e) = 0 if σx ̸= σy,
and if σx = σy, open e with probability p and close e else. Then, ω ∼ ϕ0G,p,q.

From the Potts model to the random-cluster with monochromatic
boundary conditions. Let q ≥ 2 be an integer , β > 0, j ∈ {1, . . . , q} and G
be a fixed finite graph. Sample a spin configuration σ ∼ µjG,β,q and construct ω as
previously described. Then, ω ∼ ϕ1G,p,q, with p = 1− e−β .

Proof. We only prove the first and the third statement, as the other ones follow similarly.
Say that a spin configuration σ and a percolation configuration ω are compatible if for any
{xy} ∈ E(G), ω{xy} = 1 ⇒ σx = σy. We denote by P the joint law of (ω, σ) in the
previously described coupling. Our task is to show that its second marginal is the free q-Potts
measure on G. Observe that P(ω, σ) = 0 if ω and σ are not compatible. If ω and σ are
compatible then it is clear by definition of the coupling that

P(ω, σ) = ϕ0G,p,q[ω]q
−k(ω) ∝ po(ω)(1− p)|E(G)|−o(ω).
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Fix a spin configuration σ, and introduce its set of disagreement edges D(σ) = {{xy} ∈
E(G), σx ̸= σy}. Summing over the possible ω, we get

P(σ) ∝
∑
ω

po(ω)(1− p)|E(G)|−o(ω)1ω and σ are compatible.

Now observe that the compatibility condition is restrictive only on the setD(σ): if e /∈ D(σ),
then the state of the edge e in ω does not affect the compatibility of ω and σ. Then,

P(σ) ∝ (1− p)|D(σ)|−|E|
∑

ω̃∈{0,1}E(G)\D(σ)

po(ω̃)(1− p)|D(G)|−o(ω̃).

Observe that the sum appearing in the latter expression is equal to 1 (it is the sum of all the
possible configurations under the Bernoulli percolation measure on E(G) \D(σ)). Using
the fact that (1− p) = e−β , we obtain that

P(σ) ∝ (1− p)|D(σ)| = exp(−β
∑
x∼y

1σx ̸=σy) = exp(|E(G)|) exp(β
∑
x∼y

1σx=σy).

As exp(|E(G)|) does not depend on σ, we conclude that P(σ) ∝ exp(−βH0(σ)). Hence,
the marginal of P on σ is the q-states Potts measure.

Let us turn to the third statement. Fix a percolation configuration ω on G. Observe that

P(ω) ∝
∑

σ compatible with ω

exp(−βH0(σ))po(ω)(1− p)|E(G)|−|D(σ)|−o(ω)

=

(
p

1− p

)o(ω) ∑
σ compatible with ω

exp(β(|E| − |D(σ)|))(1− p)|E(G)|−|D(σ)|

=

(
p

1− p

)o(ω)
|{σ, σ is compatible with ω}|.

In the last line we used that 1−p = e−β . Observe that a spin configurationσ is compatible with
ω if and only if σ is constant on the open clusters of ω. Thus, |{σ, σ is compatible with ω}| =

qk(ω). Inserting this in the latter equation yields that P(ω) ∝
(

p
1−p

)o(ω)
qk(ω), and thus that

the law of ω is the random-cluster measure with parameters p and q.

One of the following consequences of the Edwards–Sokal coupling is the following iden-
tity.

Lemma 1.1.3. Let d ≥ 1 be the dimension, q ≥ 2 be an integer and p ∈ (0, 1), β ≥ 0
satisfying the relation p = 1 − e−β . Let G be a finite subgraph of Zd, and x, y ∈ V (G).
Then, for any fixed colour j ∈ {1, . . . , q},

µfG,β,q[σx = σy]− 1
q = q−1

q ϕ0G,p,q[x←→ y]
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and
µjG,β,q[σx = j]− 1

q = q−1
q ϕ1G,p,q[x←→ ∂G].

Proof. The proof is almost immediate by definition of the coupling. We start by proving the
first item by considering the coupling in which the Potts measure is obtained starting with a
random-cluster configuration. Recall that we denote this coupling by P. Observe that by
definition of the coupling,

µfG,β,q[σx = σy] = P[σx = σy, x←→ y] +P[σx = σy, x ↚→ y]

= ϕ0[x←→ y] + 1
qϕ

0[x ↚→ y]

= 1
q + (1− 1

q )ϕ
0[x←→ y].

We used the fact that if {x ←→ y} occurs in ω, then σx = σy, while if x and y are not
connected in ω, then the spins σx and σy are independent and thus have a probability 1

q to be
equal. The second item is proved similarly.

Observe that this demonstrates that µfG,β,q[σx = σy]− 1
q ≥ 0 and µjG,β,q[σx = j] ≥ 1

q . This
follows very easily from the Edwards–Sokal coupling, but already is a non-trivial result for
the Potts model, as it already demonstrates a weak form of positive association (see Chapter 2).
Finally, observe that inserting G = Λn and letting n tend to infinity in Lemma 1.1.3 yields
the following result.

Lemma 1.1.4. For any q ≥ 2 and any choice of p ∈ (0, 1), β ≥ 0 such that p = 1− e−β ,
any x, y ∈ Zd and any colour j ∈ {1, . . . , q},

µfβ,q[σx = σy]− 1
q = q−1

q ϕ0p,q[x←→ y]

and
µjβ,q[σx = j]− 1

q = q−1
q ϕ1p,q[x←→∞].

1.2 The phase separation problem

1.2.1 Historical overview

The phase separation problem is concerned with the following vague question: what happens
to a physical system in which two or more phases are forced to coexist? Giving a precise
mathematical meaning to that question is already a bit of a challenge, and we shall see that
this question appears in several different contexts. Before diving into the history of the phase
separation problem, we want to mention that only Chapter 3 is directly concerned with the
phase separation problem. Chapters 4 and 5 are related to Ornstein–Zernike theory, which is
a crucial tool in the study of the phase separation problem in the planar case. This is the
reason we chose to unite these three separate works under the setting of the phase separation
problem. In what follows, we choose to restrict ourselves to the planar case d = 2 (even
though the Wulff theory has been proved to remain valid in dimensions 3 and higher).
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1.2.2 The droplet at equilibrium: the Wulff construction

For the sake of the exposition, consider the Ising model5 (the Potts model with two colours)
on Z2 in the supercritical regime β > βc. In what follows, we omit the subscript β as this
parameter will be fixed in the sequel. In that case, it is standard to name the colours + and −
instead of 1 and 2. We adopt that convention in the sequel and shall consequently name the
monochromatic measures of the Ising model µ+ and µ−. In the supercritical regime, it is
known that µ+ ̸= µ−, and that m+ := µ+[σ0] > 0. Moreover, it is easy to prove that in the
box Λn, the average number of “plus” spins is at first order 1+m+

2 n2. Fix ε ∈ (0, 1+m
+

2 ).
The phase separation problem in this setting can be rephrased in the following way.

Phase separation problem, version 1

Question: What are the geometrical properties of the measure

µ+n,ε := µ+Λn

[
·
∣∣∣∣#{x ∈ Λn, σx = −} >

(
1−m+

2 + ε
)
n2
]
.

This problem received a lot of attention for more than a century. It is of high physical
relevance, as its answer allows to understand the behaviour of two phases in equilibrium (one
may think of a crystal at the equilibrium point with its vapour for instance, but also of the
condensation problem described at the very beginning of the dissertation). In the measure
previously described, we condition on very atypical event — a large deviation event for the
average magnetization. The question is to understand the geometry of a typical configuration
sampled under µ+n,ε: how do the excessive “minus” spins occupy the space within the box?
A priori, the reader might think about 3 possible scenarios (even more if they are creative
enough!):

• The sparse scenario. The − spins are distributed approximately uniformly within the box
Λn.

• The “small islands” scenario. The− spins aggregate in a large number of droplets, which
are approximately of the same size, tending to infinity with a rate o(n2).

• The “giant island” scenario. The − spins aggregate in one “giant” droplet, the volume
of which is of order αn2 with α > 0.

Surprisingly, it turns out that for any ε ∈ (0, 1+m
+

2 ), the right answer is the third scenario.
The − spins aggregate, forming a droplet of macroscopic size. Let us define the collection of
contours of a spin configuration σ as the set of edges of the box (1/2, 1/2) + Λn such that
the two vertices of Z2 bordering those edges carry a spin of opposite sign: it is easy to see
that when σ is sampled according to a monochromatic measure, the collection of contours

5The following discussion should not be specific to the choice q = 2. We chose to only mention the case of
the Ising model as it is by far the most studied setting. Moreover, the results are slightly more natural to formulate
in this setting
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forms a family of non-intersecting closed loops in the plane. In total rigour, for the collection
of contours to be non-intersecting, one needs to fix a so-called splitting rule such as the
one graphically described in Figure 1.2. However, we do not pay too much attention to the
precise definition of the contour model, as we will not work with it in the dissertation.

+ −

− +

− +

+ −

Figure 1.2: An example of a splitting rule.

For any c1, c2 > 0 and any closed curve γ in [0, 1]× [0, 1], let us call E(γ, c1, c2) the following
event (dH denotes the Haussdorf distance between compact subsets of R2):

• There exists a contour γ0 such that

min
x∈Λn

dH(n
−1γ0, x+ γ) ≤ c1n−1/4(log n)1/2.

• All the other contours have diameter smaller than c2 log n.

In words, the event E(γ, c1, c2) corresponds to the fact that there exists a unique “large”
contour γ0 which is very close to the curve γ (the distance between γ0 and γ being quantified
by the constants c1 and c2). Then, we have the following result, coming from [47]

Theorem 1.2.1. For any ε ∈ (0, 1+m
+

2 ) and β > βc, there exists a (deterministic) closed
curve Γ in [0, 1]× [0, 1] and two constants c1, c2 > 0 such that:

lim
n→+∞

µ+n,ε[E(Γ, c1, c2)] = 1.

This theorem has a long and rich history. It was first proved by Dobrushin, Kotecký and
Shlosman in the very low temperature regime (i.e., β ≫ βc) in the influential work [47].
Later on, the result was extended by Ioffe and Schonmann to any β > βc [85]. We also refer
to the very complete survey of the problem of [15]. It paves the way to a vast number of very
delicate and interesting questions, among which are the following:

1. What can be said about the curve Γ? What are its regularity properties, and how can
one compute it as a function of the microscopic model?
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2. What are the properties of the random contour γ0 beyond its global shape given by Γ?
In particular, how does this random interface fluctuates around Γ, can interesting limit
theorems can be obtained at a finer level than the macroscopic one?

While the first question has been totally solved, the second one remains mostly open. One
of the goals of this dissertation is to provide some results and techniques in that direction.
We first explain how the first question can be answered; this section is mostly review and
discussion about the history of the problem. The interested reader may consult [15] for
further explanation and proofs.

Figure 1.3: Three simulations of the Wulff droplet in the case of the Ising model, at different
values of β > βc, increasing from left to right. Pictures used by courtesy of R. Cerf.

The purpose of what follows is a very broad discussion of the construction of the curve Γ. Of
course, it is hopeless to summarize a whole theory in a few pages; we only introduce the
main protagonists and do not give any proofs at all, as this dissertation is concerned with
the fluctuations of the phase separation line, and does not formally require the existence of
Γ.

The surface tension

A crucial quantity for the investigation of the properties of the curve Γ is the so-called
surface tension. Informally, it represents the exponential cost for the interface to move in a
given direction. As the model — at the microscopic level — is defined on a lattice, it is not
isotropic. Thus, the “cost” of a given microscopic portion of interface is very dependent on
the direction of its displacement. We start by defining the surface tension.

Let n ∈ R2, with ∥n∥ = 1. Define the n-tilted Dobrushin boundary conditions as
follows

ηnx =

{
+1 if ⟨x,n⟩ ≥ 0

−1 if ⟨x,n⟩ < 0
.

As a side note, when n = (0, 1) we will refer to ηn as the standard Dobrushin boundary
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condition and denote it by ±.

The surface tension is classically defined as the following limit:

τ(n) = lim
n→+∞

− 1

n
log

Zη
n

Λn,β

Z+
Λn,β

. (1.1)

The proposition gathering the properties of the surface tension is the following:

Proposition 1.2.2. The limit in (1.1) exists and is positive as long as β > βc. Moreover its
homogeneous extension of order 1 defines a norm in Rd (in particular it is a convex function).

A proof at a greater level of generality can be found in [96]. As the surface tension τ(n)
represents the local cost for the interface to move in a direction orthogonal to n, it is natural
— at least on a broad heuristic level — to think that the curve Γ is the minimizer of the
integral of the function τ along the curve. This motivates us to introduce the following Wulff
functional: for a closed, locally C1 curve γ, define

W(γ) =

∫
γ
τ(nx)dx,

where nx is the unique unit vector normal to the tangent line to γ at x. The Wulff variational
problem corresponds to finding the minimiser of the functional W , subject to a volume
constraint. It is often noted:

W(γ)→ min, with the constraint Vol(γ) = ε
m+ . (Wulff)

In other words, one seeks for a curve minimising the functionalW under a volume constraint.
As we aim for a presentation at a very heuristic level, we do not specify to which set of
closed curves we restrict this minimisation problem; the reader should keep in mind that
they need to be regular enough for the tangent normal vector to be defined at each point. A
whole theory has been developed to study problems such as (Wulff). Let us state its principal
output.

Theorem. Let W := {x ∈ R2, ⟨x,n⟩ ≤ τ(n), ∀n ∈ S1}. Then, there exists a unique λ∗ε > 0
such that the curve λ∗ε∂W solves (Wulff). Moreover, it is the unique solution of (Wulff).

The heuristic reasoning presented previously is then an argument in favour of the identification
of the “macroscopic profile of the giant contour” Γ with λ∗ε∂W. This is indeed the case
and is the content of the celebrated Dobrushin–Kotecký–Shlosman (DKS) theory, later on
extended all the way down to the critical temperature by Ioffe and Schonmann. Recall the
notation of Theorem 1.2.1.

Theorem ([47, 85]). For any β > βc, any ε ∈ (0, 1+m
+

2 ),

Γ = λ∗ε∂W
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as curves in the plane. In particular for any ε′ > 0,

µ+n,ε[min
x∈Λn

dH(n
−1γ0, x+ λ∗ε∂W) > ε′] −−−→

n→∞
0.

In other words, there is a phenomenon of condensation: as predicted by the classical
reasoning in physics, the droplet tends to adopt the shape that minimises its surface energy.
The mathematical derivation of that well-known fact is a spectacular tour de force, and
essentially solves the phase separation problem in two dimensions6 for the macroscopic
profile of the droplet.

Regarding the fluctuations of the random contour γ0, very low temperature results were
derived in [46, 81], but their extension to the whole subcritical regime remained out of reach,
until the apparition of a new tool that we shall discuss extensively in this dissertation: the
so-called Ornstein–Zernike theory.

1.3 Ornstein–Zernike theory

Consider the random-cluster model with parameters q ≥ 1 and0 < p < pc(q). In this regime,
we already know that there is a unique infinite volume random-cluster measure, that we call
ϕ (for convenience we drop p and q from the notation when there is no ambiguity). In this
setting, the cluster of 0 is almost surely finite. Moreover, sharpness results actually tell us
that its volume decays exponentially fast (see Chapter 2). We are interested in the following
two questions:

• Question 1: Beyond its exponential decay, what is the asymptotic behaviour of
ϕ[x←→ y] when ∥x− y∥ → ∞?

• Question 2: What are the geometric properties of the measure ϕ[ · |x←→ y], when
∥x− y∥ → ∞?

Even though these questions — at least at first sight — seem unrelated to the previous section,
there is actually a very explicit connection between them and the phase separation problem
in the planar case.

1.3.1 Ornstein–Zernike theory and the phase separation problem

Consider the following problem, which is a milder version of the phase separation prob-
lem7.

6In three dimensions, the rigorous Wulff construction could also be implemented by R. Cerf and A. Pizstora
in a very influential series of papers [31, 32, 33].

7As previously mentioned, the discussion here is not restricted to the Ising case. The same exact reasoning
could be done with the planar Potts model with q colours, replacing the Dobrushin boundary conditions ± by
j1/j2, where j1 ̸= j2 are two arbitrary colours of {1, . . . , q}.
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Phase separation problem, version 2

Consider the Ising model at a supercritical temperature β > βc in the planar box
Λn ⊂ Z2. Equip the box with standard Dobrushin boundary conditions ±. What are
the properties of the interface between the + phase and the − phase?

Figure 1.4: A simulation of an Ising configuration in a finite volume with Dobrushin boundary
conditions at β > βc. Picture used by courtesy of S. Ott.

For describing the connection between the two questions, we first need to give a precise
definition of what we call the interface. Several choices can be made; in the planar case, it
turns out that every “reasonable” choice of definition yields the same type of result8. For
convenience, we choose the one that is the most adapted to our setting.

Definition 1.3.1. Call ω+ the + cluster of the upper boundary of the box Λn. Formally, let
Λ+
n (resp Λ−

n ) be the intersection of Λn with the hyperplane {x ∈ R2, ⟨x, e⃗1⟩ ≥ 0} (resp the
hyperplane {x ∈ R2, ⟨x, e⃗1⟩ < 0} and

ω+ := {x ∈ Λn,∃ a nearest neigbour path(γi)0≤i≤N with
γ0 = x, . . . , γN ∈ ∂Λ+

n , ∀1 ≤ i ≤ N, σγi = +}.

Similarly, call ω− the − cluster of the lower boundary. We define the top interface γ+ (resp.
the bottom interface γ−) to be the unique connected portion of the dual boundary of ω+ (resp
ω−) that intersects (∂Λn)∗.

8This fact is no longer true in dimension 3 and more, in which the definition of the interface is unclear. For
example, our definition would not be the right one, as Aizenman and Lebowitz proved in [3] that in some regime
of the half-line β > βc, the + spins might percolate in the − phase in high dimension, and mentioned that the
result should hold for any d ≥ 3.
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Proposition 1.3.2. Set p = qe−β

1+(q−1)e−β . Then, the random variable (γ−, γ+) has the same
asymptotic joint distribution (when n tends to infinity) as the bottom dual boundary and the
top dual boundary of the cluster of (−n, 0) under the law ϕΛn,p,q[ · | (−n, 0)←→ (n, 0)].

Proof. The proof relies on two inputs: the Edwards–Sokal coupling and the duality of planar
random-cluster models. As formal duality is introduced only in Chapter 2, we remain elliptical
at this stage of the dissertation. Consider the Edwards–Sokal coupling and observe that the
measure induced by the Dobrushin boundary conditions is a supercritical random measure
with wired boundary conditions both on top and on the bottom of the box, conditioned on
the following event: {C+ ∩ C− = ∅}, where C+ (resp C−) is the open cluster of Λ+

n (resp.
Λ−
n ). Now use duality to map the dual measure on a subcritical measure and observe that this

measure is supported on the set of configurations in which there exists an open cluster in Λ
containing both (−n/2, 0) and (n/2, 0). The precise value of the parameter p is computed
using the Edwards–Sokal formula together with the duality formula (2.4).

This setting is slightly simpler than the Wulff setting introduced in the former section: indeed
in that case, the convexity of the surface tension implies that the system of interfaces (γ−, γ+)
converges to the line segment [−1/2, 1/2] when rescaled by n, as the size of the box goes to
infinity. Ornstein–Zernike theory will then be useful to understand the fluctuations of the
phase separation interface around the limit shape.

Before diving into the history of the theory, let us state its two most fundamental outputs.

Theorem (Ornstein–Zernike theorem). Let q ≥ 1 and 0 < p < pc(q) be a pair of subcritical
parameters. Let d ≥ 2 be the ambient dimension. Then there exist two analytic functions
τ,Ψ : Sd−1 → R+, bounded away from 0, such that for any x ∈ Sd−1, as n→∞,

ϕ[0←→ ⌊nx⌋] = Ψ(x)

n
d−1
2

e−nτ(x)(1 + o(1)), (1.2)

where ⌊nx⌋ denotes the point of the lattice that is the closest to nx.

A second important output of the Ornstein–Zernike approach is the following result, describing
the scaling limit of a long subcritical cluster. For that we need to introduce the object we
are taking the scaling limit of. Several definitions are possible; once again, we stick to the
simplest of them. Consider the measure ϕ[ · | 0←→ (n, 0)]. In that case, for any 0 ≤ k ≤ n,
the cluster of 0 — called C0 hereafter — intersects the hyperplane {k} × Zd−1 at least once.
Call Γ+

k (resp. Γ−
k ) the maximal (resp. minimal) x ∈ {k}×Zd−1∩C0 for the lexicographical

order. Moreover, we extend (Γ+
k )k and (Γ−

k )k as piecewise linear functions Γ+ and Γ− from
[0, n] to Zd satisfying Γ+

k = Γ+(k) and Γ−
k = Γ−(k) We are ready to formulate the second

Ornstein–Zernike result.

Theorem. Fix a set of subcritical parameters q ≥ 1 and 0 < p < pc(q). There exists a σ > 0
such that under the family of measures ϕ[ · | 0 ←→ (n, 0)], the following convergence
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occurs in distribution when n→∞:(
1√
n
Γ+(nt)

)
0≤t≤1

⇒ (BBσt )0≤t≤1 ,

where BBσ denotes the Brownian bridge of variance σ. Moreover. with probability tending
to 1,

sup
t∈[0,1]

|Γ+(t)− Γ−(t)| ≤ o(log2 n),

which implies that Γ+ and Γ− converge towards the same Brownian bridge after diffusive
scaling.

Remark 1.3.3 (Absence of roughening transition in dimension 2). In dimension 2, this result
has an interesting consequence: it proves the absence of so-called roughening transition.
We take this remark as an opportunity to state this fascinating conjecture. Consider the
supercritical (β > βc) Ising model in dimension d ≥ 2, in the finite volume Λn with ±
boundary conditions. An important question in statistical mechanics concerns the behaviour
of the interface9 separating the + and− phases. With this level of vagueness in the definitions,
call ϕ(0) the height (in the transverse direction) of the interface at 0. We say that the interface
is localised if Var [ϕ(0)] is uniformly bounded as n → ∞, and delocalised if it tends to
infinity. To determine whether the interface is delocalised or not is a very important and
difficult question, and the following behaviour is expected:

• In dimension d = 2, the interface should be delocalised as soon as β > βc

• In dimension d = 3, it is expected that there exists a βr ∈ (βc,∞) such that the
interface is delocalised when β ∈ (βc, βr) and becomes localised when β > βr.
Moreover, the transition at βr is expected to be of BKT type (the free energy of the
model being smooth but non-analytic at βr). This conjectural transition is called the
roughening transition, and rigorously proving its existence remains one of the main
challenges of modern Statistical mechanics.

• In dimension d ≥ 4, the interface is expected to be localised as soon as β > βc. This
was proved for the so–called Discrete Gaussian model in [66].

For a more complete exposition of these questions, we refer to the very complete review [110].
Observe that Proposition 1.3.2 together with the previous Theorem asserting that the interface
has Gaussian fluctuations for any p < pc rules out the possibility of a roughening transition
in dimension 2: indeed, as long as β > βc, the interface has transverse fluctuations of order√
n. In that case, much more is known, as Ioffe and Greenberg proved that when suitably

rescaled, for any β > βc, the interface converges towards a Brownian bridge [68].

9Once again, we do not define rigorously the terminology interface. Unlike in dimension 2, the definition
of this object requires some attention, as mentioned in the footnote preceding Proposition 1.3.2. Proposing an
accurate definition of the object is one part — though probably the easiest — of the proof of the roughening
conjecture.
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1.3.2 The historical approach

The asymptotic given by (1.2) was first conjectured in two very influential works by Ornstein
and Zernike in 1914 [101], and Zernike [114]. Trying to correct a formula describing
the phenomenon of opalescence in a crystal, they provided a heuristic in favour of the
formula (1.2). Of course, the formula was not stated in the setting of the random-cluster
model, as the latter was introduced around 1970 by Cees Fortuin and Piet Kasteleyn [60], but
rather in terms of deviations from the average density of molecules in a crystal. We now try
to discuss their approach in the modern mathematical language. For proving that a certain
function G displays the behaviour given by (1.2) (in the case of the random-cluster model
for instance, G(x) = ϕ[0←→ x]), Ornstein and Zernike assumed the existence of another
function f : Zd → R+ (that they referred to as the direct influence function), such that the
three following conditions hold

(i) The following limit exists in R+ \ {0}:

lim
|x|→+∞

−1

x
logG(x).

(ii) The following renewal equation holds:

G(x) = f(x) +
∑
y∈Zd

f(y)G(x− y).

(iii) There exists ε > 0 such that for any x ∈ Zd,

f(x) ≤ e−ε∥x∥G(x).

Property (iii) is known as the mass gap condition and is very important as it plays a role
in all the approaches to Ornstein–Zernike theory (though under slightly different forms).
The idea of [114] roughly follows the next lines. Introducing the Fourier transforms
Ĝ(k) :=

∑
x∈Zd e⟨k,x⟩G(x) and f̂(k) :=

∑
x∈Zd e⟨k,x⟩f(x), it follows from the renewal

equation that one has the following identity:

Ĝ(k) =
f̂(k)

1− f̂(k)
.

The next step is to carefully Taylor expand f̂ around 0, and show that there exist three
constants A,B,C > 0 (property (iii) is important for proving the positivity of B) such
that:

Ĝ(k) =
A

B + C|k|2 + o(|k|3)
(1 + o(1)).

The decay announced in (1.2) then follows by the application of an adequate Tauberian
Theorem.
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Later on, Abraham and Kunz [2] and Paes-Leme [104] were able to derive independently the
first rigorous implementation of Ornstein and Zernike’s reasoning, by constructing the function
f explicitly in the case of classical lattice gases theory, by means of a graphical representation
of the partition function of the model. The idea of using graphical representations to derive
Ornstein–Zernike behaviour of the correlations of off-critical spin models has then become a
central idea in the modern and rigorous developments of Ornstein–Zernike theory.

1.3.3 The modern approach

Later on, the Ornstein–Zernike result for the order of decay of the correlations has been
shown to be true for a number of models in a perturbative regime (namely very far away
from criticality; in the case of the Ising model, it would correspond to considering β ≫ βc),
see [17, 97]. Then a rigorous derivation of the Ornstein–Zernike asymptotic result was done
in the case of the self-avoiding walk along a direction given by the axis in [34] and later on
in any direction in [82]. For percolation models, the case of Bernoulli percolation was first
treated for an on-axis direction in [21] and later on in any direction in [22]. The case of
subcritical Ising models was treated in [24] via the random-line graphical representation of
the two-point correlation function. Finally, the analysis was carried out for all the subcritical
random-cluster measures in [25]. In recent developments, the theory has been extended to
Ising models with long-range interactions [10], and a new direction of research has been
studied regarding the failure of Ornstein–Zernike behaviour in some long-range Ising models,
when the coupling constants decay too slowly [7]. In what follows, we try to streamline
the argument of [25] and insist on the difficulties of the proof. The interested reader might
compare this approach and the content of Chapter 5, where we develop a slightly different
approach of the theory that allows to treat the near-critical regime of the model.

We first recall the main statement of [25].

Theorem (Ornstein–Zernike theorem). Let q ≥ 1 and 0 < p < pc(q) be a pair of subcritical
parameters. Let d ≥ 2 be the ambient dimension. Then there exist two analytic functions
τ,Ψ : Sd−1 → R+ bounded away from 0 such that for any x ∈ S1, as n→∞,

ϕ[0←→ ⌊nx⌋] = Ψ(x)

n
d−1
2

e−nτ(x)(1 + o(1)),

where ⌊nx⌋ denotes the point of the lattice that is the closest to nx.

Unlike the first approach of the Ornstein–Zernike theorem consisting in the abstract analysis
of the poles of the Fourier transform of the function ϕ[0←→ ⌊nx⌋], the “modern” proof of
this statement consists in an explicit coupling between a system of carefully selected vertices
of a long percolation cluster and the trajectory of a so-called “directed random walk” on Zd.
The latter having the same asymptotic behaviour as a regular random walk on Zd−1, (1.2)
follows classically from a local limit theorem. We now streamline the principal steps of the
analysis.
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Step 1: Coarse-graining of the cluster.

The first step consists in reducing the microscopical geometrical complexity of a cluster
containing both 0 and ⌊nx⌋ by coarse-graining it. Fix a scale K ≥ 0, which will be chosen
later on. For any x ∈ Zd, the following limit exists and is positive

τ(x) := lim
n→∞

− 1

n
log ϕ[0←→ ⌊nx⌋]. (1.3)

At this stage of the dissertation, we do not prove the statement as it will be a consequence of
the results of Chapter 2. For any y ∈ Zd, define BK(y) = y + {x ∈ Zd, τ(x) ≤ K}. The
following algorithm, described in [111], allows to extract a directed tree-like structure from a
cluster C, at scale K. Fix an arbitrary order on the vertices of Zd, and consider the following
algorithm, directly extracted from [111].

Algorithm 1: Extraction of the skeleton of a cluster
Data: A percolation cluster C containing 0 and x
Result: A sequence of vertices x0, . . . , xN
x0 ← 0;
A← BK(0);
n← 1;

while there exists some y ∈ ∂A such that y
C\A←→ ∂BK(y) do

Let xn be the minimal such vertex ;
A← A ∪BK(xin;
n← n+ 1

end

This sequence of vertices can be transformed in a tree by the following procedure: add a
vertex between xk and min{xj , j ∈ {0, . . . , k − 1}, xk ∈ ∂BK(xj)}. The tree T shall be
called the skeleton of the cluster C. It is easy to check that its output is a tree, and that
C ⊂

⋃
0≤k≤N B2K(xk). In that sense, the skeleton provides an approximation of the cluster

at scale K. Of course, its geometry is much simpler than the one of the original cluster, as it
contains no cycles and is relatively insensitive to the microscopic geometry of C.

Step 2: Entropy/energy analysis of the geometry of the skeleton

The interest of the above-mentioned procedure lies in the following fact: when the scale K
is chosen to be sufficiently large, the competition between entropy (the number of possible
skeletons) and energy (the probabilistic cost of one given skeleton) is won by the energy term
for any p < pc. Indeed, fix some N ∈ N to be the number of vertices of the skeleton, and fix
a skeleton T with N vertices. On the one hand, it is easy, thanks to the FKG inequality (see
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Chapter 2) and by definition of the balls BK , to show that, as K →∞,

∑
C∼T

ϕ[C0 = C] ≤
N∏
i=0

ϕ1BK(xi)
[xi ←→ ∂BK(xi)] ≤ exp(−KN(1 + oK(1))).

On the other hand, it is an easy combinatorial fact that the number of possible trees with
branching number at most CKd−1 with N vertices is bounded above by (CKd−1)N .

Hence, the energy bound is exponential inK while the entropy bound is exponential in logK.
As K grows, the geometry of a typical skeleton will be more and more regular due to that
observation. Let us be more precise about the last sentence. Fix δ > 0. For j ∈ {1, . . . , N},
say that xj is a cone point of the skeleton {x0, . . . , xN} if the set {x0, . . . xj−1} is contained
into the “backward cone” Yb(xj) := xj + {y ∈ Zd, ⟨x, y⟩ ≤ −δ∥y∥}, and if the set
{xj+1, . . . , xN} is contained inside the “forward cone” Y f(xj) := xj + {y ∈ Zd, ⟨x, y⟩ ≥
δ∥y∥}. In particular, some more refined analysis (though in the fashion of the energy/entropy
argument presented just above) allows the authors to derive the following result:

Proposition 1.3.4. There exists δ > 0 and c1, c2 > 0 such that

ϕ[#{k ≥ 0, xk is a cone point of the skeleton of C} < c1∥x∥ | 0←→ x] ≤ e−c2∥x∥.

The skeleton of a cluster is thus quite regular as it is contained in the following “diamond
envelope”: ⋃

xi cone-points of T

Y f(xi) ∩ Yb(xi+1).

Moreover, there is a density of such cone-points.

Step 3: From the geometry of the skeleton to the geometry of the cluster via surgery

We want to go back from the behaviour of the skeleton to the behaviour of the cluster under
the conditional measure ϕ[·|0 ←→ x]. At this stage, one knows two crucial facts about it.
First, the skeleton of a typical cluster has a density of cone points. Second, the cluster is
contained into

⋃N
i=1B2K(xi). Now observe that, up to increasing δ, this proves that the

cluster is contained in the slightly fattened diamond enveloppe:

C ⊂
⋃

xi cone-points of T

(Y f(xi) ∩ Yb(xi+1)) ∪BK(xi).

If xi is a cone point of T(C), the finite energy property implies that — conditionally
on the event {0 ←→ x} — one can perform a local surgery and close all the edges of
BK(xi) \ (Yb(xi)∪Y f(xi)) to transform that cone point of the skeleton into a cone point for
the cluster by paying a probabilistic cost that is at most of order exp(−Kd), uniformly in the
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boundary conditions induced by the cluster C. As the scale K is now fixed, this demonstrates
the following:

Proposition 1.3.5. There exists δ > 0 and c1, c2 > 0 such that

ϕ[#{k ≥ 0, xk is a cone point of C} < c1∥x∥ | 0←→ x] ≤ e−c2∥x∥.

Step 4: Coupling with the effective random walk

Figure 1.5: The effective random walk. The percolation cluster is contained in the shaded
green “diamond enveloppe”.

We now make the assumption that x = ne⃗1 and shall write τ := τ(e⃗1). This is not too much
of a simplification, as the reader might check that the analysis is essentially the same in any
other given direction. The latter Proposition suggests a convenient decomposition of a cluster
into irreducible pieces: due to the linear number of cone points, one might see a typical
cluster as a succession of little “sausages” contained in diamonds. This motivates to resum
over those sausages and to only take into account their displacement, as the sum of these
displacements will already provide a very accurate description of the cluster shape. Thus,
say that a connected subgraph G ⊂ Zd is irreducible if

1. There exists xL, xR ∈ V (G) such that

G ⊂ Y f(xL) ∩ Yb(xR),

2. G does not have any cone points other than xL and xR.

For such an irreducible G, define its displacement by X(G) = xR − xL (observe that
⟨X(G), e⃗1⟩ > 0).

Observe that a given cluster containing 0 and ne⃗1 admits a unique decomposition into
irreducible subpieces (in some sense, one might be tempted towards an analogy with the
primes factors of a natural number), and that this decomposition has been previously proved
to contain a linear number of pieces. We now introduce the following distribution on
N∗ × Zd−1:

P[y] :=
∑

G irreducible
X(G)=y

eτ⟨y,e⃗1⟩ϕ[C0 = G].
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Assume for a minute that we are in the case of Bernoulli percolation (i.e., q = 1 in that case).
By independence it would be true that for any cluster C containing 0 and ne⃗1, one has the
following identity10

eτnϕ[C0 = C] ≈
N∏
i=1

P[Ci], (1.4)

where (C1, . . . , CN ) is the unique irreducible decomposition of the cluster C. This identity
in law provides us with a coupling between the set of the cone points of the cluster and the
trajectory of a directed random walk.

The crux observations are the following:

1. P is a probability measure on N∗ × Zd−1.

2. P has exponential tails.

The second item comes from all the reasoning of steps 1 – 3. For the first one, it comes from
the renewal structure of the cluster. Indeed, observe that introducing the following generating
series,

G(t) =
∑
n≥1

tneτnϕ[ne⃗1 ∈ C0] and K(t) =
∑
n≥1

tn
∑

y∈Zd,⟨y,e⃗1⟩=n

P(y).

Then, equation (1.4) yields

G(t) =
K(t)

1−K(t)
+R(t),

where the remainder R takes into account the clusters that are irreducible all the way to the
point ne⃗1 (by the exponential tails of P however, its radius of convergence is larger than 1,
actually it is trivial that R(t) ≤ K(t), which is sufficient to conclude). Now, the radius of
convergence of G is 1 by definition of τ , and the radius of convergence of H is strictly larger
than 1 by the exponential tails of the measure P. This demonstrates that K(1) = 1, which
means that P is indeed a probability measure.

Now, sample independent and identically distributed random variables (Xn)n≥1 with law P.
Their sum Sn := X1 + · · ·+Xn will be called a directed random walk on Zd. It is actually
more accurate to see it as the trajectory of a (d− 1)-dimensional random walk with a random
time reference given by the variables ⟨Xi, e⃗1⟩. The idea is now to compare the law of this
object conditioned to eventually reach the vertex ne⃗1 with the law of the original cluster
conditioned to contain the point ne⃗1.

In particular, one can recover (1.2) by means of a local limit theorem for directed random
walks on Zd: indeed,

eτnϕ[0←→ ne⃗1] ≈ PDRW
0 [∃k ≥ 0, Sk = ne⃗1] = Cn−

d−1
2 (1 + on(1)),

10To make this true, one needs to take into account that both the very first and the very last step of the walk have
a different distribution. This is a minor technicality and we do not take it into account to clarify the exposition.
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where we used that a directed random walk on Zd satisfies a (d − 1)-dimensional local
limit theorem, a fact that is not too difficult to establish and follows by classical theory of
random walks. Moreover the convergence of the process of the cone points towards a (d− 1)-
dimensional random bridge follows directly from Donsker’s invariance principle.

Step 5: Factorisation of measure

The previous reasoning shows how to conclude in the case of Bernoulli percolation. However,
the crucial factorisation property given by (1.4) is not true anymore in the case of the
random-cluster model, as the different irreducible pieces interact through the boundary
conditions they induce on each other. This means that the effective random walk introduced
in the previous step have steps that are no longer independent. To derive a local limit Theorem
ultimately yielding the Ornstein–Zernike asymptotic formula, two options have been analyzed:
the first one consists in the abstract analysis of the kernel of a Ruelle–Perron–Frobenius
operator and using ideas coming from ergodic theory [1] to obtain the Gaussian behaviour
of the directed random walk. The other option, more probabilistic in nature, consists in
using ideas coming from perfect simulation to argue that — up to enlarging the probability
space and adding additional randomness — one can randomly concatenate some steps of the
directed random walk to obtain an embedded random walk with independent increments, and
thus mimic the reasoning of Step 4. We do not develop on that aspect as Chapter 5 relies
on a similar technique, which will be thoroughly explained. Let us simply mention that the
important property of the subcritical random-cluster models that is used in both of these
approaches is its exponential mixing property: the influence of the boundary conditions on a
finite region of the space decays exponentially fast in the distance between these boundary
conditions and the region, see Chapter 2 for a precise statement.

Remark 1.3.6. Coming back to the historical approach detailed in Subsection 1.3.2, this
scheme of proof illuminates the construction of the function f , the existence of which was
implicitly assumed by Ornstein and Zernike. Indeed, in that case, it would correspond to
the “irreducible connectivity function”, suitably tilted by the factor eτ⟨y,e⃗1⟩. The renewal
equation is trivial to prove in the case of Bernoulli percolation, and the mass gap property has
been explained to hold in steps 1–3 of the previous reasoning. This approach demonstrates
the power of graphical representations of spin models: indeed, in the case in which
G(0, x) = ⟨σ0σx⟩ is the 2-points correlation function of the Ising model, it is not clear at
all how the “direct correlation function” f should be defined. However, going through the
Edwards–Sokal coupling and looking at the previous reasoning, the function f acquires a
geometrical significance and is much easier to understand. This gives a hope to extend the
Ornstein–Zernike picture to all the subcritical models of statistical mechanics for which
graphical representations of the correlation functions are available. In particular, it would be
of interest to investigate the case of the so-called XY model, which is a lattice model in which
the spins take their values in the non-discrete group S1 but possesses nonetheless a graphical
representation of its correlation through the so-called Brydges–Fröhlich–Spencer (BFS in
short) representation.
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1.4 Questions and motivations of the dissertation

Let us briefly summarize the preceding discussion about the geometry of the phase separation
interface. At the macroscopic scale (the scale n of the size of the box), the phase separation
line is very well understood: it is shown to converge towards a deterministic curve given
by the solution of a variational problem. On the other hand, at scale

√
n, Ornstein–

Zernike theory allows to understand the fluctuations of the phase separation line around
this deterministic shape (in a milder setting, even if partial results exist in the Wulff setting
at low temperatures [46, 81]). The three main questions driving this dissertation are the
following:

1. At scale n, the smoothing effect induced by the Wulff conditioning takes over the
intrinsic randomness of the model. On the other hand, at scale

√
n, as the interface

displays Brownian fluctuations, it is a hint that it does not “feel the conditioning”, as
Ornstein–Zernike theory asserts that it is the behaviour of a regular (i.e., unconstrained)
interface. Is there a scale at which those two effects (the smoothing induced by the
conditioning and the roughening due to the randomness of the model) have the same
order of magnitude? Can one identify this scale and study the phase separation line at
this scale?

2. In the setting in which more than two phases have to coexist, what is the joint behaviour
of the finite number of interfaces coexisting in the system? In particular, do the several
interfaces coexisting in the system still display a Brownian behaviour, or is there a
more subtle effect due to the interactions between them?

3. Finally, what is the effect of the temperature parameter on the behaviour of the
Ornstein–Zernike formula (1.2)? In particular, what happens to the formula (1.2) when
p↗ pc (equivalently when β ↗ βc in the Potts model)?

1.5 Overview of the remainder of the dissertation

Let us describe now at a very broad level the content of the remaining four chapters of the
dissertation. We try to introduce the main results of each section in a rather informal way; all
the statements are made at a higher level of rigor in the corresponding chapters. We also
try to motivate them at a “bird’s-eye level”, and focus on the broad links with the phase
separation phenomenon and the rigorous Ornstein-Zernike theory.

1.5.1 Description of Chapter 2

Chapter 2 is devoted to a detailed introduction of the random-cluster model and of some of its
basic properties. We shall extensively use these in the remainder of the dissertation.
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1.5.2 Description of Chapter 3

Chapter 3 corresponds to the article [40], written in collaboration with Romain Panis. The
goal of this work is to introduce a toy model for the two-dimensional Potts phase separation
interface and to study its behaviour at a mesoscopic scale (the meaning of that expression will
be made clearer later on). Let us briefly describe the model and summarize the results. We
study a model of random oriented paths constrained by area trapping. Let us fix a parameter
λ ∈ (0, 12). We define Λ to be the set of finite oriented edge-paths in the first quadrant of Z2,
starting at the y-axis and ending at the x-axis. The word “oriented” refers to the fact that
we only consider paths that can only take rightward or downward steps. We equip Λ with
the following probability measure: for any γ ∈ Λ, denoting by |γ| its number of steps, we
define

Pλ[γ] =
λ|γ|

Zλ
,

where Zλ = (1− 2λ)−1 is the only constant ensuring that Pλ is indeed a probability measure.
This measure can also be seen as a random walk measure with geometrically randomized
length. Fix a parameter N ≥ 1. If Γ denotes a random variable of law Pλ, we introduce
PN2

Λ to be the distribution of Γ conditioned on the event that {A(Γ) ≥ N2}, where A(Γ)
designates the area enclosed by the path Γ and the two coordinate axes. This is our basic
model; our goal is to study its fine geometric properties.

Let us quickly explain why despite being quite simple, this model exhibits all the features of the
phase separation interface for the two-dimensional Potts model (and we refer to Section 3.5
of Chapter 3 for a more detailed explanation). A typical sample of PN2

λ experiences a
competition between the area requirement and the exponential tails of the background
measure Pλ. More precisely, the essential features of a sample Γ are its local Brownian
behaviour (as the background measure is “random walk-like”) and its global curvature
induced by the conditioning.

The (rather imprecise) question that drives this piece of work is the following: what is the
scale at which those two competing effects have the same order of magnitude? In order to
answer it, we study deviations of Γ from its convex hull. Indeed, observe that the convex hull
of Γ is made of a union of line segments that we shall call facets. We introduce the random
variable MeanFL (for “mean facet length”) to be the length of the unique facet intersecting
the line {y = x}11 . Let xmid be the point of N2 ∩ γ that is the closest to the line {y = x}.
We define MeanLR (for “mean local roughness”) as the Euclidean distance between xmid

and the facet intercepted by the line {y = x}. Even though their definition might seem
quite intricate, those random variables encapsulate the persistence of the randomness in the
horizontal and vertical direction under the conditioning.

A very rough heuristic was proposed by Hammond [77] to identify the scaling of MeanFL.

11If the line {y = x} intersects the common endpoint of two facets, we arbitrarily set MeanFL to be the length
of the leftmost of them.
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1.5. OVERVIEW OF THE REMAINDER OF THE DISSERTATION

Indeed, assume that the conditioning forces the path to adopt a globally parabolic profile at
scale N (this is a strong assumption that might actually not be satisfied by this model). Then,
the scale ℓ at which this global curvature is of the same order as the Brownian fluctuations of
the path should satisfy

ℓ1/2 ≈ ℓ2

N
,

which implies that ℓ is of order N2/3. In this work, we validate this conjecture, proving the
following:

Theorem. Let 0 < λ < 1
2 . For any ε > 0, there exist c, C > 0 and N0 ∈ N such that for any

N ≥ N0,
PN

2

λ

[
cN

2
3 < MeanFL(Γ) < CN

2
3
]
> 1− ε,

and,
PN

2

λ

[
cN

1
3 < MeanLR(Γ) < CN

1
3
]
> 1− ε.

We also prove an additional result regarding the behaviour of the maximal facet length and
local roughness, namely:

Theorem. Let 0 < λ < 1
2 . There exist c, C > 0 such that,

PN
2

λ

[
cN

2
3 (logN)

1
3 < MaxFL(Γ) < CN

2
3 (logN)

1
3
]
−−−−→
N→∞

1,

and
PN

2

λ [cN
1
3 (logN)

2
3 < MaxLR(Γ) < CN

1
3 (logN)

2
3 ] −−−−→

N→∞
1.

As explained in more detail in Chapter 3, this work opens a new interesting perspective
on the behaviour of the phase separation interface at the mesoscopic scale N2/3, which
encompasses precisely the competition between the Gaussian randomness of the interface
and its curvature inherited from the global conditioning. In particular, a number of open
problems regarding the scaling limit of the phase separation interface are discussed at the
end of the chapter.

1.5.3 Description of Chapter 4

This chapter is based on the article [38]. In this work, we use the Ornstein–Zernike theory
to analyse a system of non-intersecting long percolation clusters in the framework of the
subcritical random-cluster model. This work implies a few concrete and novel consequences
for the random-cluster model; however, it also demonstrates that the Ornstein–Zernike picture
remains valid in a setting that is more complex than a single long cluster in infinite volume. As
discussed in the introduction of Chapter 4, it thus adds a piece to an already subsequent series
of papers implementing the Ornstein–Zernike in dependent or inhomogeneous environments
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(see for instance [84, 102] to mention just two of them; a more detailed bibliographical review
is available in the introduction of Chapter 4).

Consider ϕ the (unique) random-cluster measure on Z2 with parameters q ≥ 1 and p < pc(q).
We also consider a finite set of “source points” (0, x1), . . . , (0, xr) and a set of “target points”
(n, y1), . . . , (n, yr). We introduce the following events Con :=

⋂
i∈{1,...,r}{(0, xi) ←→

(n, yi)}, and NI :=
⋂

1≤i ̸=j≤r{C(0,xi) ∩ C(0,xj) = ∅} (Cx is the cluster of the vertex x ∈ Z2).
In words, under the event {Con,NI} the points (0, xi) and (n, yi) are pairwise connected by
distinct percolation clusters. We are interested in two questions: what is the behaviour of the
quantity ϕ[Con,NI] as n tends to infinity, and what is the typical behaviour of a percolation
configuration sampled under the measure ϕ[·|Con,NI]? The answer to the first question is
given by the following result12(recall that the function τ was introduced in (1.3); we choose
to write τ := τ(e⃗1)):

Theorem. Let q ≥ 1, 0 < p < pc(q) and r ≥ 1 be a fixed integer. Then, when n→∞,

ϕ [Con,NI] ≍ n−
r2

2 e−τrn.

We also describe the scaling limit of the shape of the clusters under the conditioning on
{Con,NI}. For that, we need to introduce the interfaces of a cluster. They are described
rigorously in the introduction of Chapter 4; for our purpose of exposition, let us simply say
that they are the piecewise linear functions bordering the top and the bottom of a cluster (see
Figure 4.1 for an illustration). They are called Γ+ and Γ− in this prequel. Our second result
states that under a diffusive scaling (i.e., a scaling of order n in the horizontal direction and√
n in the transverse direction), the system of interfaces converges towards a system of r

Brownian bridges conditioned not to intersect: the so-called Brownian watermelon.

Theorem. Under the family of measures ϕ [ · |Con,NI] (we recall that Con,NI depend on
n), there exists σ > 0 such that:(

1√
n

(
Γ+
1 (nt), . . . ,Γ

+
r (nt)

))
0≤t≤1

(d)−−−→
n→∞

(σBW
(r)
t )0≤t≤1,

where BW(r) is the Brownian watermelon with r bridges, and where the convergence holds
in the space C ([0, 1],Rr) endowed with the topology of uniform convergence. Moreover,
almost surely, for all 1 ≤ i ≤ r,

1√
n

∥∥Γ+
i − Γ−

i

∥∥
∞ −−−→n→∞

0.

12The result stated here is less general than the statement presented in Chapter 4. In particular, in full generality,
we allow the source and target points to depend on n. We obtain a uniform estimate of ϕ[Con,NI] in the regime
where their norm is of order o(

√
n).
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We also notice en passant that the first result in the case r = 2 has an interesting consequence
regarding the supercritical random-cluster model. Indeed, a simple duality argument yields
the following formula computing the asymptotic behaviour of the probability of existence of
a large but finite percolation cluster:

Theorem. For any p > pc(q), the following estimate holds when n→∞:

ϕ[(n, 0) ∈ C0, |C0| <∞] ≍ 1

n2
e−2τn,

where τ := lim
n→∞

− 1

n
log ϕp∗ [0←→ (n, 0)].

In the last statement, p∗ correspond to the dual parameter of p. In particular, this theorem
implies that the truncated correlation length of the planar random-cluster at p > pc equals
twice the correlation length at p∗ < pc, a fact that was previously known only in the case
q = 1 [35].

The analysis is carried out by proving that under the conditioning, the behaviour of the
clusters is similar to that of a system of random bridges conditioned not to intersect; a
conclusion that is reminiscent of the single-cluster Ornstein–Zernike theory. However, a
number of difficulties are encountered in implementing this heuristic, due to the a priori
long-range interactions of the random-cluster measure. Indeed, the interaction between
the different clusters turns out to be attractive, allowing the a priori existence of a pinning
transition — a regime in which this attraction is so strong that the clusters actually remain at
a bounded distance from each other. We rule out the existence of such a transition, proving
that the system obeys an entropic repulsion phenomenon at any subcritical temperature. In
words, the entropy due to the large number of possible trajectories for the percolation clusters
always beats the attractive term, causing the random walk-like behaviour of the clusters. This
entropic repulsion phenomenon is established through a careful analysis of the random-cluster
interactions.

1.5.4 Description of Chapter 5

This chapter is based on the preprint [39], written in collaboration with Ioan Manolescu. The
goal of this work is to extend the Ornstein–Zernike formula to the near-critical regime of
the planar random-cluster model when q ∈ [1, 4]. Recall that the Ornstein–Zernike formula
provides a precise understanding of the quantity ϕ[0←→ ⌊nx⌋] as a function of n, where ϕ
is the unique subcritical infinite-volume limit of the random-cluster measure. In this work,
we prove a formula for the connection probabilities that is uniform both in n and in pc − p,
in the planar case. This work has several interesting consequences. First, it allows to take
limits in the Ornstein–Zernike formula when both n→∞ and p↗ pc simultaneously, thus
allowing to understand the probability of long connections in the near-critical limit of the
random-cluster model. Moreover, it also highlights an interesting — and perhaps slightly
more subtle — feature of the Ornstein–Zernike construction. Indeed, in [25], the authors
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classically couple a long subcritical percolation cluster with a directed random walk having
independent increments. Our walk can be summarized as the answer to the question “what is
the size of the random walk steps as a function of p?”. Looking carefully at the construction
of [25], it appears that the events used by the authors to decouple the steps of the random walk
and to factorize the measure are the so-called “4-arm events”. In our work, we prove that
the decoupling actually occurs at a scale which is strictly smaller (presumably polynomially
smaller as p→ pc) than the one at which the 4-arm events typically occur; namely the scale
of the correlation length. This the main feature of this work: instead of relying on the
4-arm events to factorise the random walk measure, we prove that having uniformly positive
probability of crossing square boxes is sufficient to get the mixing necessary to factorise the
random walk measure.

Let us introduce formally our result. We need to introduce the so-called “one-arm critical
probability”, namely π1(p) := ϕpc [0←→ ∂Λ(τp)−1 ].

Theorem. Let q ∈ [1, 4]. The following estimate holds uniformly in n and in p < pc. Let
ϕp,q be the unique random-cluster measure on Z2 with parameters p and q. Then for any
x ∈ S1,

ϕp,q[0←→ ⌊nx⌋] ≍ π1(p)2 (τpn)−
1
2 e−τp(x)n

Observe that the constants implicitly appearing in the theorem depend neither on p < pc nor
on n. This formula has the following feature: it interpolates between the critical behaviour of
the system when p is very close to pc (essentially the term π1(p) is a critical term) and the
classical Ornstein–Zernike behaviour at subcriticality. In particular when p < pc is fixed
and n→∞, we retrieve the classical Ornstein–Zernike asymptotic presented earlier in the
introduction.
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Chapter 2

The random-cluster model and its basic
properties

This section is devoted to properly prove certain properties of the random-cluster measure
that we shall use extensively in this dissertation. This chapter is mostly review; the classical
references on general properties of random-cluster measures are [69, 70, 49]. We recall the
definition of the random-cluster measure from the Introduction: fix two parameters p ∈ [0, 1]
and q ≥ 1, a finite graph G, and a boundary condition η. If ω is a percolation configuration
on G, we recall that the random-cluster measure with boundary conditions η is defined
as:

ϕηG,p,q[ω] =
1

ZηG,p,q

(
p

1− p

)o(ω)
qk

η(ω),

where ZηG,p,q is the partition function.

2.1 Monotonicity, positive association and couplings

2.1.1 Monotonicity via Glauber dynamics

In what follows, G is a fixed finite graph, and the parameters p, q are fixed. We start by
computing the single-edge marginal of the random-cluster measure when the state of every
edge but one is fixed.

Lemma 2.1.1. For any boundary condition η, any edge e = {xy} ∈ E(G) and any
percolation configuration ξ on G \ {e},

ϕηG,p,q[ωe = 1|ωE\{e} = ξ] =

{
p if x←→ y in ξη,

p
p+q(1−p) else.

.
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Proof. Observe that

ϕηG,p,q[ωe = 1|ωE\{e} = ξ] =
1

1 +
ϕηG,p,q [ωe=0,ωE\{e}=ξ]

ϕηG,p,q [ωe=1,ωE\{e}=ξ]

. (2.1)

In the case in which x←→ y in ξη, opening the edge e does not change the number of open
clusters of ω. Therefore, the ratio appearing in the denominator of (2.1) is equal to 1−p

p . This
yields

ϕηG,p,q[ωe = 1|ωE\{e} = ξ] =
1

1 + 1−p
p

= p.

In the case in which x ↚→ y in ξη, the ratio will be equal to 1

1+
q(1−p)

p

, as the configuration

in which ωe = 0 has one additional cluster than the configuration in which ωe = 1. Thus,

ϕηG,p,q[ωe = 1|ωE\{e} = ξ] =
1

1 + q(1−p)
p

=
p

p+ q(1− p)
.

This seemingly trivial observation has several consequences, amongst which is the celebrated
Domain Markov property. Indeed, observe that the previous computation yields the formal
equality

ϕηG,p,q[ωe = 1|ωE\{e} = ξ] = ϕξ
η

{e},p,q[ωe = 1].

This identity extends to any finite domain as follows

Proposition 2.1.2 (Domain Markov property). Let G′ = (V ′, E′) be a subgraph of G. Then
for any boundary condition η and any percolation configuration ξ ∈ {0, 1}E\E′ ,

ϕηG,p,q[·G′ |ωE\E′ = ξ] = ϕξ
η

G′,p,q[·]. (DMP)

Proof. Use the fact that (DMP) was established in the case of E′ consisting of a single edge
and reason by induction on the cardinality of E′.

Another easy yet important consequence of (2.1) is the so-called finite energy property.

Proposition 2.1.3 (Finite energy property). There exists a constant c ∈ (0, 1) such that for
any finite graph G, any boundary condition η and any percolation configuration ξ on G,

c|E| ≤ ϕηG,p,q[ω = ξ] ≤ (1− c)|E|. (FE)
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We now introduce one of the most fundamental tools in percolation theory: the so-called
positive association property of the random-cluster model. For what follows, we fix q ≥ 11.
The next proposition encompasses both the monotonicity of the model in p, in the boundary
conditions and its positive association properties. We first recall the notion of stochastic
domination.

Recall that we equipped the set of percolation configurations on G with the following partial
order: ω ≤ ω′ ⇔ ∀e ∈ E,ω(e) ≤ ω′(e). An event A will be said to be increasing if for
any ω ≤ ω′, ω ∈ A ⇒ ω′ ∈ A. That is to say, opening some more edges in the percolation
configuration can only favour the occurence of A. A canonical instance of an increasing
event is {ωe = 1} for some fixed edge e ∈ E.

Definition 2.1.4. Let µ, µ′ be two probability measures on {0, 1}E . We say that µ′
stochastically dominates µ if for any increasing event A,

µ[A] ≤ µ′[A].

In that case, we will use the notation µ ≼ µ′. It is easy to check that ≼ defines a partial order
on the set of probability measures on {0, 1}E .

One method that is commonly used to prove stochastic domination between different percola-
tion measures is the use of the coupling method. Assume that one can construct a probability
measure Ψ on the set {0, 1}E × {0, 1}E satisfying the following three properties.

1. Ψ(·, {0, 1}E) = µ[·].

2. Ψ({0, 1}E , ·) = µ′[·].

3. Ψ({(ω, ω′) ∈ {0, 1}E , ω ≤ ω′}) = 1.

In that case, it is straightforward that µ ≼ µ′. Actually, the converse of that statement
is also true, and known as Strassen’s Theorem — it is sometimes useful in the proof of
certain statements in Statistical mechanics2. The proof of the next proposition, stating useful
monotonicity properties of the random-cluster measure, crucially relies on the coupling
method.

Proposition 2.1.5 (Monotonicity of the random-cluster measure). Let p ≤ p′ and 1 ≤ q ≤ q′.
LetA be an increasing event of positive probability and let ξ ≤ ξ′ be two boundary conditions
on ∂G. The following monotonicity properties hold:

1This is not for convenience; indeed, for q < 1, the random-cluster can be shown to exhibit negative
association on certain graphs (see for instance the example following Theorem 3.8 of [70]). Furthermore, the
model is known to converge towards the Uniform Spanning Tree when p→ 0 and q/p→ 0, which is known to
be negatively associated.

2Especially in the theory of strong embedding of random variables in the Brownian motion, see the excellent
survey [98].
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1. Monotonicity in the boundary conditions.

ϕξG,p,q ≼ ϕξ
′

G,p,q. (CBC)

2. Monotonicity in the parameters.

ϕξG,p,q′ ≼ ϕξG,p′,q.

3. Positive association.
ϕξG,p,q ≼ ϕξG,p,q[·|A].

Proof. The proofs of the three points follow the same pattern (with a slight subtlety for the
last one that we will explain at the end of the proof). Let us focus on the proof of the first
point. We shall construct an explicit coupling Ψ between ϕξG,p,q and ϕξ

′

G,p,q satisfying the
previously listed assumptions. The construction of the coupling itself is of crucial importance
in percolation and spin models theory, and is known as Glauber dynamics: the measure
ϕξG,p,q is obtained as the stationnary measure of a Markov process in an enlarged probability
space. Enlarge the probability space by assigning to each edge e ∈ E a collection of
independent and identically distributed exponential random variables (τe,i)i≥1. The variables
Te,n = τe,1+ · · ·+τe,n will be seen as clocks: at each time Te,n, the state of the edge ewill be
examined by the procedure and possibly resampled. We also equip the probability space with
a collection (Ui)i≥1 of independent and uniform random variables in [0, 1], also independent
of the family (τe,i)e∈E,i≥1. The dynamics is a continuous Markov chain (ωt, ω

′
t)t≥0 on

{0, 1}E × {0, 1}E , evolving as follows. Inductively define the sequence (ek, tk) by setting
(e0, t0) = (∅, 0), and (ek, tk) to be the location and the time associated to the first clock to
ring after time tk−1 (this is well-defined as G is finite). Now define the configurations ωtk
and ω′

tk
with the following rule. Initialize by setting ω0 = ω′

0 ≡ 0. Then, set

ωtk(e) =

{
1[Uk ≤ ϕηG,p,q[ω(e) = 1|ωE\{e} = ωt−k

]] if e = ek

ωe,t−k
else,

and

ω′
tk
(e) =

1[Uk ≤ ϕ
η′

G,p,q[ω(e) = 1|ω′
E\{e} = ω′

t−k
]] if e = ek

ω′
e,t−k

else,

where ωt−k = lims↗tk ωs. Two things now need to be argued. First of all, it is clear that this
dynamic defines a continuous Markov chain on {0, 1}E × {0, 1}E . Moreover, ωt (resp. ω′

t)
is irreducible, aperiodic and positive. Therefore, it converges towards its unique invariant
measure, which clearly is ϕηG,p,q (resp. ϕη

′

G,p,q) by construction. To conclude, it remains to
argue that for any t ≥ 0, one has ωt ≤ ω′

t. This can be proved inductively on k. Assume that
ωtk ≤ ω′

tk
. We argue that for a fixed edge e, one has that, thanks to (2.1),

ϕηG,p,q[ω(e) = 1|ωE\{e} = ωt−k
] ≤ ϕη

′

G,p,q[ω
′(e) = 1|ωE\{e} = ω′

t−k
]. (2.2)
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Indeed, if the endpoints of some edge e are connected in ωη
t−k

, then they need to be connected

in (ω′)η
′

t−k
as ωη

t−k
≤ (ω′)η

′

t−k
by hypothesis. As q ≥ 1, this observation proves (2.2). Since

ω0 = ω′
0, this concludes the proof by setting Ψ(ω, ω′) = limt→∞ P(ωt, ω′

t), where P is the
distribution of the configuration under the above-mentioned procedure.

The proof of the second item follows similarly.

For the proof of the third one, there is a slight subtlety, as the distribution of ω′ (which
eventually has the distribution ϕ[·|A]) is not a positive Markov chain on {0, 1}E . However,
as it remains positive, aperiodic and irreducible on A, the proof carries on in the same
fashion.

Remark 2.1.6. Remark that in the previous proof, when resampling the state of an edge
e, we decide to open it either with probability p or p

p+q(1−p) depending on the state of the
edges outside of {e}. When q ≥ 1, the Glauber dynamics immediately yields the following
stochastic domination by Bernoulli percolation, for any boundary condition η:

ϕG, p
p+q(1−p)

,1 ≼ ϕηG,p,q ≼ ϕG,p,1.

This will help later in the proof of the non-triviality of the phase transition

The third item is often cast in a slightly different form, known as the Fortuin–Kasteleyn–
Ginibre (FKG hereafter) inequality, which is the cornerstone of modern percolation theory
and was first proved in [61].

Corollary 2.1.7 (FKG inequality). For any q ≥ 1, any p ∈ [0, 1], any boundary condition η
and any two increasing events A,B,

ϕηG,p,q[A ∩ B] ≥ ϕ
η
G,p,q[A]ϕ

η
G,p,q[B]. (FKG)

Proof. AsB is increasing, the stochastic domination given by the positive association property
immediately yields

ϕηG,p,q[B] ≤ ϕ
η
G,p,q[B|A].

2.1.2 Increasing couplings by exploration

As seen previously, the use of the coupling method is of crucial importance in percolation
theory, as it allows to derive very useful monotonicity properties of the random-cluster
model. We described one important way of coupling two random-cluster measures, namely
the Glauber dynamics. Here, we describe another family of couplings that also are of
fundamental use in percolation theory (to the point that we challenge the reader to find
a modern percolation paper that does not contain the word “exploration”!): the so-called
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couplings by exploration. The most general way to describe this procedure is by using the
theory of decision trees.

Definition 2.1.8. Consider a finite graph G = (V,E) such that |E| = n, equipped with a
family of independent uniform random variables on [0, 1], called (Ue)e∈E . A decision tree T
is a family (e1, (rk)1≤k≤n), where e1 is the starting edge of the tree (i.e., the first edge whose
state is going to be revealed) and (rk)k∈{1,...,n} is a family of decision rules, i.e., for each
k ∈ {0, . . . , n− 1}, rk+1 takes into input a k-tuple of edges (e1, . . . , ek) and (Ue1 , . . . Uek)
and returns an edge ek+1 ∈ E \ {e1, . . . , ek}. In other words, once the state of the edges
e1, . . . , ek has been revealed, rk+1 returns the next edge to be revealed according to the
values of the randomness (Ue1 , . . . Uek). An important notion for decision trees, which — as
the reader might guess — is very well suited to the Domain Markov property, is the notion of
stopping time. A random variable τ ∈ N∗ ∪ {∞} shall be called a stopping time if the event
{τ ≤ k} is measurable with respect to (e1, . . . , ek) and (Ue1 , . . . , Uek) for all k ≥ 0.

The decision tree provides us a procedure to reveal the state the edges one by one in some
predefined (possibly random, as it is allowed to depend on the family (Ue)e∈E) order. As in
the Glauber dynamics, there is a way of inductively sampling a random-cluster configuration,
in the order given by the decision tree, if one choses the proper marginals for the revealed
edges. Moreover, this way of sampling the random-cluster model has an important feature
that we will use extensively later on: if one stops the revealment algorithm at a given stopping
time the law of the unexplored configuration will simply be the random-cluster measure on a
random graph, with random boundary conditions, due to (DMP). Finally, as in the Glauber
dynamics, one can sample a pair of configurations using the same family of uniform variables
(Ue)e∈E . In particular conveniently choosing the revealment algorithm can be useful to
couple two random-cluster configurations in a random subgraph ofG in an increasing fashion.
This discussion is summarized in the following

Lemma 2.1.9. Let T = (e1, (rk)k∈{0,1}) be a decision tree on G. Let ξ1 ≤ ξ2 be an ordered
pair of boundary conditions. Let τ be a stopping time for T. We sample inductively, edge by
edge, two percolation configuration as follows. For any k ∈ {1, . . . , n}, set

ω1
rk(e1,...,ek,Ue1 ,...,Uek

)) =

1[Urk(e1,...,ek,Ue1 ,...,Uek
)] ≤ ϕξ1 [ωrk(e1,...,ek,Ue1 ,...,Uek

) = 1|ω1
e1 , . . . , ω

1
ek
],

and

ω2
rk(e1,...,ek,Ue1 ,...,Uek

)) =

1[Urk(e1,...,ek,Ue1 ,...,Uek
)] ≤ ϕξ2 [ωrk(e1,...,ek,Ue1 ,...,Uek

) = 1|ω2
e1 , . . . , ω

2
ek
].

Denote by Ψτ the joint law of the revealment algorithm stopped at τ . Then, if Gτ is the
(possibly random) subgraph induced by the set of edges that have been revealed before time
τ and (ω1

τ , ω
2
τ ) is the percolation configuration revealed on Gτ ,
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1.
Ψτ (·, {0, 1}Gτ ) = ϕ

(ω1
τ )

ξ

G\Gτ
[·] and Ψτ ({0, 1}Gτ , ·) = ϕ

(ω2
τ )

ξ

G\Gτ
[·].

2.
ω1
τ ≤ ω2

τ a.s.

Proof. The proof is essentially clear, as the first item comes from the Domain Markov
property (DMP) and the second item comes from a reasoning similar to the proof of the
monotonicity in the boundary conditions using Glauber dynamics.

Despite the generality of the latter statement, the reader should keep in mind that we will
essentially use one special type of decision tree: the so-called exploration of the cluster of a
given vertex. For instance, assume that one wants to explore the cluster of x ∈ Λn inside
Λn. One can construct the following decision tree. Fix an arbitrary order on the edges of G
and take e1 to be the minimal edge of E(Λn) having x as one of its endpoints. At step k, let
e1, . . . , ek be the set of already revealed edges. Then

1. Either there exists an open edge of E \ {e1, . . . , ek} that is adjacent to one of the edges
of {e1, . . . , ek}. In that case, we reveal the minimal one.

2. Or there exists no such edge, and we stop the algorithm. This defines a stopping time τ .

The exploration procedure has the useful property that when {τ <∞}, then it induces free
boundary conditions on the unexplored portion of the space. In particular, since ω1

τ2 ≤ ω
2
τ2 ,

where τ2 is the stopping time of the cluster exploration for ω2, then the coupling also induces
free boundary conditions for ω1, and one can further couple ω1 and ω2 so that they agree on
the unexplored region of the space.

Finally we note that this algorithm can be adapted to explore the cluster of a given connected
set in Λn (we will use this several times later on). We refer the reader to the proof of
Lemma 2.2.2 or of Proposition 2.2.5 for what might be the simplest example of the use of
that type of exploration arguments

Equipped with those tools, we are now ready to prove the existence of infinite-volume limit
measures on Zd, as announced in Lemma 1.1.1. From now, we do not work anymore on an
abstract graph G, but rather on subgraphs of Zd, where the dimension d ≥ 1 is fixed. For
convenience, we recall the statement of Lemma 1.1.1.

Lemma 2.1.10. Let d ≥ 1, q ≥ 1 and p ∈ [0, 1]. There exist two measures ϕ0p,q and ϕ1p,q (not
necessarily distinct) on {0, 1}E(Zd) such that for any event A depending on a finite number
of edges,

lim
n→∞

ϕ0Λn,p,q[A] = ϕ0p,q[A] and lim
n→∞

ϕ1Λn,p,q[A] = ϕ1p,q[A].

49



2.2. THE PHASE TRANSITION OF THE RANDOM-CLUSTER MODEL

Proof. We focus on the case of ϕ0, as the proof for ϕ1 follows the same principle. First,
we argue that it is sufficient to prove the existence of the limit for any increasing event A
depending on a finite number of edges, as the inclusion-exclusion principle ensures that
the probability of any event depending on a finite number of edges can be written as the
combination of the probabilities of increasing events depending on a finite number of edges.
Let A be an increasing event depending on a finite number of edges, and say that all those
edges are contained in the box ΛR, for some sufficiently large value of R ≥ 0. We are going
to argue that the sequence ϕ0Λn,p,q

[A] is non-decreasing in n ≥ R+1. The argument relies on
a very classical reasoning in percolation, called an “exploration argument”. We first explain
it in the percolation language, in order to make the reader more familiar with the percolation
vocabulary, and then explain the reasoning rigorously. Let n ≥ R + 1, and consider the
measure ϕ0Λn+1,p,q

. Under that measure, explore the random boundary conditions induced by
a percolation configuration on ∂Λn. As those boundary conditions dominate the free ones on
∂Λn, it follows that ϕ0Λn+1,p,q

[A] ≥ ϕ0Λn,p,q
[A]. Formally, the previous reasoning writes as

follows. Use the Domain Markov property (DMP) to write

ϕ0Λn+1,p,q[A] =
∑

ξ b.c. on ∂Λn

ϕξΛn,p,q
[A]ϕ0Λn+1,p,q[ω induces ξ on ∂Λn].

Now by (CBC), observe that for any boundary condition ξ on ∂Λn, it is the case that
ϕξΛn,p,q

[A] ≥ ϕ0Λn,p,q
[A]. Summing over all ξ, this proves that ϕ0Λn+1,p,q

[A] ≥ ϕ0Λn,p,q
[A].

Thus we proved that for any event depending on a finite number of edges, limn→∞ ϕ0Λn,p,q
[A] :=

ϕ0p,q[A] exists. By Kolmogorov’s extension Theorem, ϕ0p,q can be extended to a probability
measure on the σ-algebra generated by the cylinder events.

The proof of the existence of the limit of ϕ1Λn,p,q
follows the same pattern, as one can show

that if A is an increasing event depending on a finite number of edges, then ϕ1Λn,p,q
[A] forms

a non-increasing sequence.

From now on, we will not make reference to the underlying graph Zd, nor to the parameters
q ≥ 1, p ∈ [0, 1] when the context is clear. It is routine to check that the properties previously
proved in finite volume, namely monotonicity in the parameters, in the boundary conditions
and the FKG inequality extend to the measures ϕ0 and ϕ1. Moreover, it is standard that
those measures are invariant by lattice translations and ergodic (in the sense that any event
translationally invariant event must have probability either 0 or 1).

2.2 The phase transition of the random-cluster model

Equipped with the infinite-volume limit measures on Zd and their monotonicity properties,
we may define a critical parameter pc = pc(q, d) as follows.

pc := inf{p ≥ 0, ϕ1p,q[0←→∞] > 0}.
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When p > pc we say that 0 has a positive probability to percolate, meaning that it has a
positive probability to lie in an infinite cluster. The first result regarding the phase transition
of the random-cluster model is that it is non-trivial, in the sense that 0 < pc < 1.

Proposition 2.2.1. For any q ≥ 1 and any d ≥ 2, the critical parameter satisfies pc(q, d) ∈
(0, 1).

Proof. The proof follows a very classical perturbative argument, called the Peierls argument.
One can safely say that this argument gave birth to the modern mathematical theory of
percolation and spin systems. We start by reducing the problem to Bernoulli percolation by
using Remark 2.1.6. Indeed, observe that when q ≥ 1, the output of Remark 2.1.6 and a
small computation yield that:

qpc(1, d)

1 + pc(1, d)(q − 1)
≤ pc(q, d) ≤ pc(1, d).

Thus, it is sufficient to prove that pc(1, d) ∈ (0, 1). Abbreviate pc(1, d) := pc(d). Moreover,
observe that pc(d) is decreasing in d. It is then sufficient to prove that pc(2) < 1, and that
0 < pc(d).

Let us start with the first item. We will briefly use the duality of the model without formally
referring to it, however the reader might refer to the next subsection to phrase the proof in a
more natural way. Consider the (dual) lattice (Z2)∗ := (1/2, 1/2) + Z2, and observe that to
any edge-circuit γ∗ of E((Z2)∗), one can associate the set of edges of E(Z2) intersecting the
edges of γ∗. We call such a set a blocking section. Now observe that one has the following
graph-theoretical equivalence in dimension d = 2:

The cluster of 0 is finite ⇔ There exists a closed blocking section surrounding 0.

This implies that

ϕp,1[|C0| <∞] ≤
∑

γ blocking section ∋0

ϕp,1[γ is closed ].

Now observe that on the one hand, the probability for a blocking section with n edges to be
closed is (1− p)n. On the other hand, the set of blocking sections of length n surrounding 0
is in bijection with the set of edge-circuits of length n surrounding 0. An easy way to upper
bound the cardinality of this set is for instance to choose a starting point somewhere along
the x-axis (at most 2n + 1 choices) and say that the number of paths of length n starting
from that point is at most 4n (this is a very crude bound, but we do not seek for optimality in
this proof). Thus we proved that

ϕp,1[|C0| <∞] ≤
∑
n≥4

(2n+ 1)4n(1− p)n.
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It is now clear that there exists a value of p sufficiently close to 1 such that this sum is strictly
upper bounded by 1, and so that pc(2) < 1.

Let us turn to the converse bound, which is even easier. Indeed, it suffices to notice that for
any n ≥ 1,

ϕp,1[|C0| =∞] ≤ ϕp,1[∃γ a self-avoiding path of open edges of length n starting at 0]
≤ pn|{γ : γ is a self-avoiding path of length n starting at 0}|
≤ pn(2d)n.

The estimation of the cardinality of the set of self-avoiding paths is far from being optimal,
but once again we only need crude estimates. When p < 1

2d , this sequence converges to 0,
which proves that pc(1, d) ≥ 1

2d > 0.

The random-cluster thus enjoys a phase transition as follows: when p < pc, there is almost
surely no infinite cluster. However, when p > pc there exists almost surely an infinite
cluster in Zd for ϕ1 (by ergodicity of the measure). As we shall see, the behaviour of the
model drastically changes whether p < pc (the so-called subcritical regime), p = pc (the
critical regime), or p > pc (the supercritical regime). We are going to put a special focus on
properties of the subcritical regime in what follows.

2.2.1 The subcritical regime

We first observe that there exists a single infinite-volume limit in the subcritical regime.

Lemma 2.2.2. When d ≥ 1 and p < pc, ϕ0 = ϕ1. Therefore there exists a unique
infinite-volume limit measure.

Proof. Fix R > 0, and A be an increasing event depending on the edges of the box ΛR. We
aim to prove that ϕ1[A] ≤ ϕ0[A], which will conclude the proof of the lemma since ϕ0 ≼ ϕ1.
Fix ε > 0. We first argue that the definition of pc implies that there exists a scaleN satisfying
that for any n ≥ N , ϕ1[∂ΛR ←→ ∂Λn] < ε. Indeed, observe that due to (CBC) and (DMP),

ϕ1[0←→∞] ≥ ϕ0ΛR
[ω ≡ 1]ϕ1[∂ΛR ←→∞].

Then, since the quantity ϕ0ΛR
[ω ≡ 1] is uniformly positive in n by the finite energy

property (FE), ϕ1[∂ΛR ←→ ∂Λn] must tend to 0 as n tends to infinity. Define N as above.
Now fix n ≥ N , and explore the cluster of ∂Λn in Λn. With probability at least 1 − ε
this cluster does not reach ∂ΛR, which means that it induces free boundary conditions in a
random subset of Λn containing ΛR. By comparison of boundary conditions, for any such
set Γ, it is true that ϕ0Γ[A] ≤ ϕ0Λn

[A]. This yields:

ϕ1Λn
[A] ≤ ε+ ϕ0Λn

[A].

52



2.2. THE PHASE TRANSITION OF THE RANDOM-CLUSTER MODEL

Letting n tend to infinity is sufficient to conclude.

Thus there is a unique infinite-volume limit measure in Zd when p < pc, and we shall refer
to it as ϕ. Moreover, one knows that ϕ[0 ←→ ∂Λn] → 0 when n → ∞. One of the most
celebrated results of the last decade is the following quantification of that rate of decay
in a groundbreaking work by Duminil-Copin, Raoufi and Tassion [52] and known as the
sharpness of the phase transition.

Theorem 2.2.3. For any dimension d ≥ 1, and any q ≥ 1, p < pc, there exists a constant
c > 0 such that

ϕ1Λn
[0←→ ∂Λn] ≤ exp(−cn).

In particular,
ϕ[0←→ ∂Λn] ≤ exp(−cn).

Let us comment a bit on this result. It is easy to show that for very small values of p,
this exponential decay of point-to-box probabilities holds: indeed, looking carefully at the
Peierls argument implemented in Proposition 2.2.1, we established exponential decay for
the diameter of the cluster when p < 1

2d for instance. However, there is no chance to push
this reasoning all the way up to p < pc, as it does not rely at all on the definition of pc
(but rather on an entropy/energy type argument). Thus, a proof of sharpness of the phase
transition is much more of a challenge, and it usually involves much deeper ideas. The
sharpness of the phase transition for Bernoulli percolation was proved independently by
Menshikov [95] and Aizenman–Barsky [4]. Their methods, though different in nature, cannot
be generalized to the random-cluster model as they rely heavily on independence. The
next breakthrough came around 30 years later, with the proof by Vincent Beffara and Hugo
Duminil-Copin of the sharpness of the phase transition in Z2 [13]. The method relies heavily
on planarity of the model, as it builds on RSW-type constructions. Finally, the sharpness
result was extended to a very general class of periodic graphs (including Zd for d ≥ 1) by
Duminil-Copin, Raoufi and Tassion [52]. This is spectacular, as very little is known about
percolation in dimensions d ∈ {3, . . . , 6}3. The method relies on the use of a new inequality
(the OSSS inequality) originally discovered in the context of theoretical computer science and
randomized algorithms. This work is one the major achievements in the field of percolation
during the last decade.

Remark 2.2.4. For the (very!) alert reader, it might appear contradictory that the Ornstein–
Zernike Theorem described in the Introduction was proved in 2007, as the result stated is

3In particular, proving that Ppc [0←→∞] = 0 for the three-dimensional Bernoulli percolation remains one
the most challenging and mysterious problems in Statistical mechanics. This has been established rigorously
when d ≥ 11 [59] thanks to the so-called “mean-field theory” in which some robust tools, amongst which the
so-called “lace expansion” are available (see [106]). However those methods should not work below the so-called
upper critical dimension which is d = 6 for the Bernoulli percolation
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stronger than the sharpness of the phase transition which was established in 2017. However,
this is no paradox, as the Ornstein–Zernike was proved under the assumption of exponential
decay which was not yet known to hold for any subcritical temperature.

From a physical perspective, the subcritical random-cluster model thus appears to be “trivial”
in the sense that the large scale geometry of percolation clusters is degenerate: as Zd is of
polynomial growth, union bounds suffice to show that the volume or the diameter of the
clusters decay exponentially fast in n. From a renormalization group perspective4, a physicist
would say that the model converges towards a trivial fixed point of the renormalization map.
However, we hope to have convinced the reader in the introduction of this thesis that some
interesting problems remain in the subcritical phase, amongst which are the computations
of the corrections to the exponential decay of the connection probabilities and the phase
separation problem. From sharpness, further properties of the subcritical regime can be
derived, such as the so-called ratio mixing property of the model. Several ways of stating the
results are possible, we chose the following one.

Proposition 2.2.5 (Exponential mixing for the subcritical random-cluster model). Let A be
an event depending on the edges of Λr, for some r ≥ 0. For any q ≥ 1, any p < pc, there
exists a constant c > 0 such that for any boundary conditions ξ1, ξ2 on ∂ΛR with R ≥ r
large enough,

∣∣∣1− ϕξ
1

ΛR
[A]

ϕξ
2

ΛR
[A]

∣∣∣ ≤ exp(−cR).

Several proofs of the statement are possible; in particular it has been recognized by [6]
that exponential decay of the connectivity probabilities together with the Domain Markov
property implies the strong ratio mixing property. However, we here closely follow the
lines of [51] as the statement is slightly stronger and as it illuminates the use of increasing
couplings described in Subsection 2.1.2.

Proof. Let D be a domain in ΛR such that ΛR/2 ⊂ D. The proof uses the increasing
coupling exploring the cluster of ∂D in D described in Subsection 2.1.2. Let us call Ψ the
increasing coupling under which ω1 ∼ ϕ0D, ω

2 ∼ ϕξ
1

D and let us call τ the stopping time
associated to the fact that the exploration procedure stops for ω2 before revealing an edge of
Λr. As previously described, if τ <∞, then one can couple ω1 and ω2 in such a way that

4We will not emphasize on this notion but refer to [58] for a comprehensive review
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they agree on Λr. As a consequence,

ϕξ
1

D [A]− ϕ0D[A] = Ψ[ω2 ∈ A, ω1 /∈ A]
≤ Ψ[ω2 ∈ A, τ =∞]

= ϕξ
1

D [∂D ←→ ∂Λr,A]

≤ ϕ1D\Λr
[∂D ←→ ∂Λr]ϕ

ξ1

D [A]

≤ exp(−c(R/2− r))ϕξ
1

D [A],

where the third inequality holds by comparison of boundary conditions and Domain Markov
property, and the last one is a consequence of the sharpness result stated in Theorem 2.2.3.
We obtain that ϕξ

1

D [A] ≤ (1− e−c(R/2−r))−1ϕ0D[A]. In particular, this holds for D = ΛR.
Now by exploring the boundary conditions induced by ϕ0ΛR

on some D ⊃ ΛR/2, it is easy to
show that

ϕ0ΛR
[A] ≤ (1− e−c(R/2−r))−1ϕ0D[A]. (2.3)

We proved that ϕξ
1

ΛR
[A]− ϕ0ΛR

[A] ≤ ϕξ
1

ΛR
[A]e−c(R/2−r) and are now aiming for a converse

bound. Consider once again the increasing coupling Ψ exploring the cluster of ∂ΛR both
in ω1 ∼ ϕ0ΛR

and in ω2 ∼ ϕξ
1

ΛR
in an increasing fashion, and let now τ̃ be the stopping

time associated to the event that the exploration stops in ω2 before reaching ∂ΛR/2. In the
case that {τ < ∞}, observe that it induces free boundary conditions on a random subset
Ω ⊃ ΛR/2, and we can use (2.3) to argue that

ϕξ
1

ΛR
[A] =

∑
D⊃ΛR/2

ϕ0D[A]Ψ[Ω = D] + Ψ[τ̃ =∞, ω2 ∈ A]

≥ (1− e−c(R/2−r))ϕ0ΛR
[A]Ψ[τ̃ <∞]

= (1− e−c(R/2−r))ϕ0ΛR
[A](1− ϕξ

1

ΛR
[∂ΛR ←→ ∂ΛR/2])

≥ (1− e−cR/2)(1− e−c(R/2−r))ϕ0ΛR
[A].

Thus we got that
ϕξ

1

ΛR
[A] ≥ (1− e−c(R/2−r))2ϕ0ΛR

[A].

We used that ϕξ
1

ΛR
[∂ΛR ←→ ∂ΛR/2] ≤ ϕ1ΛR

[∂ΛR ←→ ∂ΛR/2] ≤ e−cR/2 by the sharpness
Theorem. This shows that — up to altering the constant c > 0,

ϕ0ΛR
[A]− ϕξ

1

ΛR
[A] ≤ e−cRϕ0ΛR

[A]

Gathering the pieces together, we proved that

|ϕξ
1

ΛR
[A]− ϕ0ΛR

[A]| ≤ exp(−cR)ϕ0ΛR
[A].
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The desired claim follows by the triangle inequality. Indeed,

|ϕξ
1

ΛR
[A]− ϕξ

2

ΛR
[A]| ≤ 2 exp(−cR)ϕ0ΛR

[A] ≤ 2 exp(−cR)(1− exp(−cR))−2ϕξ
1

ΛR
[A],

and the conclusion holds altering once again the value of c > 0.

As a side remark, observe that the only place in which we use the subcriticality of the model
is when invoking the sharpness result. That means that good upper bounds on the box-to-box
connection probabilities can automatically be converted in good mixing statements. In
particular, in [51], the authors use the polynomial decay of the 1-arm probabilities at criticality
to derive a polynomial ratio mixing for the planar random-cluster measures at any value of
the parameter p.

2.2.2 The phase transition of the random-cluster model on a planar
graph

As previously mentioned, the phase transition of the random-cluster is quite poorly understood
in dimensions d ≥ 3. In particular, the properties of the critical and supercritical phases
remain mysterious (for the subcritical phase however, one can safely say that the sharpness
statement provides a very good understanding of the geometry of the regime). However,
things are special in dimension 2 as Z2 is a planar graph, and a special tool is available in
that setting: the so-called planar duality. In that case, we are going to see that one is able
to compute the exact value of the critical point, and that the question of the continuity or
discontinuity of the phase transition is solved.

Planar duality

Consider the translated lattice (Z2)∗ := (1/2, 1/2) + Z2. Observe that each edge e of the
original lattice Z2 intersects a unique edge of (Z2)∗, that we call e∗. To any percolation
configuration ω ∈ {0, 1}Z2 we associate a percolation configuration ω∗ called the dual
configuration by setting

∀e∗ ∈ E((Z2)∗), ω∗(e∗) = 1− ω(e).

Assume for a minute that ω ∼ ϕp,1 (i.e., that we are interested in Bernoulli percolation).
Then it is immediate that ω∗ ∼ ϕ1−p,1. This is called a duality relation. It hints that 1/2
plays a special role in the model, as in that case ω ∼ ω∗ (this point is called the self-dual
point). Such a duality result is also available for the random-cluster model, but the role of
boundary conditions cannot be ignored, and duality only works for so-called planar boundary
conditions.

Let G be a finite subgraph of Z2 and ξ be a boundary condition on ∂G. ξ will be said to be
planar if it can be induced by some percolation configuration η on Z2 \G. In that case, we
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define the dual boundary condition ξ∗ as the boundary condition induced by η∗ on ∂G∗. The
duality relation then takes the following form

Lemma 2.2.6. For ξ a planar boundary condition on ∂G and ω ∼ ϕξG,p,q, the law of its dual
configuration is given by ω∗ ∼ ϕξ

∗

G∗,p∗,q, where p∗ is uniquely defined by the equation

pp∗ = q(1− p)(1− p∗). (2.4)

Proof. We only treat the case of free boundary conditions and G connected. The proof relies
on the famous Euler formula. Indeed, recall that we call o(ω) the number of open edges of a
configuration ω and k(ω) the number of its open clusters. Let us also call f(ω) the number of
faces of the configuration ω (observe that due to the fact that we are looking at free boundary
conditions for ω, ω∗ possesses a unique infinite face). Now note that f(ω∗) = k(ω). Thus,
Euler’s relation becomes

k(ω) = |V |+ f(ω)− o(ω)− 1

We will also use the fact that o(ω) + o(ω∗) = |E| to obtain that

ϕ0G,p,q(ω) ∝
(

p

1− p

)o(ω)
qf(ω

∗)

∝
(
1− p
p

)o(ω∗)

qo(ω
∗)+k(ω∗)

∝
(
(1− p)q

p

)o(ω∗)

qk(ω
∗).

Thus, when p∗

(1−p∗) = q 1−pp we obtain the desired identity.

Observe that the unique point such that p = p∗ (the so-called self-dual point) can be shown
to be equal to

psd =

√
q

1 +
√
q
.

It is a famous theorem of Vincent Beffara and Hugo Duminil-Copin [13] that in Z2, when
q ≥ 1, the critical point and the self-dual point coincide.

Theorem 2.2.7. When q ≥ 1, for the planar random-cluster model,

pc(q) =

√
q

1 +
√
q

We mention another very important result proved in the last decades regarding the continuity
of the phase transition i.e., the question of determining whether there is a unique infinite
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volume measure at criticality, or equivalently to decipher wehther ϕ1pc,q[0←→∞] is positive.
Surprisingly, it turns out that the answer to that question depends on the value of q. Indeed,
one has the following result.

Theorem 2.2.8 ([53, 50]). Consider the critical random-cluster model at p = pc.

1. For q ∈ [1, 4], ϕ0 = ϕ1. Equivalently, ϕ1[0←→∞] = 0.

2. For q > 4, ϕ0 ̸= ϕ1. Furthermore, ϕ1[0←→∞] > 0.

We conclude this list of results by mentioning a recent theorem by Alexander Glazman and
Ioan Manolescu [65] providing a total classification of the infinite-volume limit measures of
the random-cluster model. Recall that this set is convex, and is thus by the Krein–Milman
Theorem the convex hull of its extremal points. It is then sufficient to identify the latter to
totally understand the set of Gibbs states of the model. Due to the previous result, the only
case in which there is more than a single infinite-volume limit measure is when q > 4 and
p = pc(q).

Theorem 2.2.9. Let q > 4 and p = pc(q). The measures ϕ0 and ϕ1 are distinct and extremal.
Moreover, for any infinite-volume limit measure ϕ of the planar random-cluster model, there
exists some λ ∈ [0, 1] such that

ϕ = λϕ0 + (1− λ)ϕ1.
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Chapter 3

The phase separation at a mesoscopic
scale: a random walk example

3.1 Introduction

The phase separation problem is concerned with the study of the boundary appearing
between two different phases of a statistical mechanics model, in a regime where those two
phases can coexist. In his seminal work [113], Wulff proposed that such a boundary should
macroscopically adopt a deterministic limit shape given by the solution of a variational
problem involving thermodynamic quantities such as the surface tension. This prediction has
been an object of intense study, and has by now been made rigorous in a very wide variety of
settings, see for instance the monographs [47, 15, 29].

While this macroscopic shape is dependent on the model, the fluctuations of the random
phase boundary are widely believed to behave in an universal way. A first natural candidate
to measure these fluctuations is the deviations from the limit shape. These have been shown
to be Gaussian in [45] in the context of area-constrained random walks, and later on in [46]
for the 2D Ising phase boundary at low temperatures. Two other quantities of interest are
given by the maximal facet length and the maximal local roughness of the interface, that
are respectively the length of the largest segment of the convex hull of the interface and the
maximal deviation of the interface from this convex hull. In a seminal paper [5], Alexander
conjectured that the exponent governing the scaling of the maximal local roughness should
be 1/3. In the context of percolation models in the phase separation setting, he derived
upper bounds for an averaged version of the local roughness. Alexander and Usun [108] then
complemented this work by providing lower bounds for the local roughness in Bernoulli
percolation. Later on, in a remarkable series of papers, Hammond [73, 74, 75] was able to
identify the exact scale of the maximal facet length and the maximal local roughness of a
droplet of volume N2 in the planar subcritical random-cluster model. Indeed, he proved
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that the former is of order N2/3(logN)1/3, while the latter is of order N1/3(logN)2/3,
validating the exponent derived in [5]. These results are built on the identification of N2/3 as
the scale at which the curvature effect enforced by the conditioning has the same order of
magnitude as the Gaussian fluctuations of the interface. Finally, let us mention that in an
earlier paper, Hammond and Peres [78] introduced a continuous and Brownian version of the
phase separation problem, studying a two-dimensional Brownian loop conditioned to enclose
a large area. They proved results in favour of the appearance of the cube-root fluctuations in
this setting.

In this paper, we study a model of random walks, with geometrically randomised length,
conditioned to enclose an area at least equal to N2. This model was suggested by Hammond
in [74, Section 1.0.4] and later in [77]. We prove that, as predicted by the author, his techniques
can successfully be applied to this setting, enabling us to establish the above-mentioned
polylogarithmic corrections. However, the main innovation of this paper is the identification
of the scaling of the typical facet length and local roughness (rather than their maximal
values). Call MeanFL (resp. MeanLR) the length (resp. the local roughness) of the facet
intersecting a given line. We prove that MeanFL ≍ N2/3 and MeanLR ≍ N1/3, see Theorem
3.1.3.

The scaling exponents 1/3 and 2/3 have been shown to arise in various related contexts in
statistical mechanics. An important example is the critical prewetting in the Ising model,
which has been extensively studied in a beautiful series of papers [80, 109, 86, 64, 83] to
mention a few of them. A remarkable aspect of these works is that the results are derived
without the help of any integrable feature. Let us also note that [26, 18] provided strong
evidence for a similar behaviour in the context of the SOS model above a wall in (2 + 1)
dimensions.

To the best of our knowledge, it is the first time that those exponents are identified in a context
such as ours. Indeed, in the above-mentioned works, the interface lies above a facet of length
much longer than N2/3 — this facet being deterministic and artificially created by looking at
the interface along a side of a large box for instance. However, in our work, the facets are
not deterministic, and themselves reflect the competition between the randomness and the
curvature induced by the conditioning.

Finally, we strongly believe (supported by [74]) that our approach is robust and should allow
to derive the same result for a large variety of models, including the fluctuations of the
outermost circuit in a subcritical random-cluster model conditioned to enclose a large area,
which itself is a good toy model for the boundary of a droplet in a supercritical Potts model.
Note that this suggests that at scale N2/3, our model and more general phase boundaries
models should lie in the same universality class. This is discussed in Section 3.5.
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3.1.1 Definition of the model and statement of the main results

Let Λ be the set of finite paths in the first quadrant of Z2 which start on the y-axis and end on
the x-axis, and which are oriented in the sense that they only take rightward and downward
steps, see Figure 3.1. For γ ∈ Λ, we define |γ| to be its length, i.e. its number of steps (which
is also the sum of the y-coordinate of its starting point and the x-coordinate of its ending
point). It will be convenient to identify an element γ ∈ Λ with the set of points of N2 it
passes by, i.e γ = (γ(k))0≤k≤|γ|. We set Λn to be the subset of Λ of such oriented paths of
length n. It is clear that |Λn| = 2n. If a, b ∈ N2, we denote by Λa→b the set of downright
paths from a to b.

Let 0 < λ < 1
2 . We define a probability measure Pλ on Λ by requiring that, for γ ∈ Λ,

Pλ[γ] =
1

Zλ
λ|γ|,

where Zλ is the normalisation constant given by Zλ = (1− 2λ)−1.

k

ℓ

{y = x}
γ

xmid

C(γ)

Figure 3.1: An example of path γ (in bold black) with |γ| = k + ℓ, and its least concave
majorant C(γ) (in blue). The mean facet of γ is coloured in orange, while the mean local
roughness is the length of the red segment. The area A(γ) is the area of the light green
shaded region.

The probability measure Pλ is to be seen as a background measure which imposes an
exponential decay of the probability of sampling a long path. We now enforce a competing
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constraint of enclosing a large area. For γ ∈ Λ, we define the area of γ, denoted by A(γ),
to be the area enclosed by the graph of γ and the two coordinate axes (see Figure 3.1). Let
N ∈ N and let Γ be a sample of Pλ. We define a new probability measure PN2

λ on Λ by

PN
2

λ [ · ] := Pλ
[
· | A(Γ) ≥ N2

]
.

We also introduce ΛN2 ⊂ Λ, the set of all paths of Λ that capture an area greater thanN2 (this
set is exactly the support of PN2

λ ). Samples of PN2

λ typically experience a competition between
capturing a large area and minimizing the length of the paths. As explained before, it suggests
that for large values of N , a typical sample of PN2

λ will have a global curvature imposed by
the area condition and Gaussian fluctuations imposed by the background measure (once the
length is fixed, the background measure is the uniform law). The object of interest in our
work, which tracks the competition between these two phenomena, is defined below.

Definition 3.1.1 (Least concave majorant, facets). Let γ ∈ Λ. We set Ext(γ) to be the set of
non-zero extremal points of the convex hull of γ ∪ {(0, 0)}. Let C(γ) be the least concave
majorant of γ, that is, the graph of the piecewise affine function passing through all the points
of Ext(γ). Observe that with this definition, C(γ) becomes a finite union of line segments of
R2 which are called facets (see Figure 3.1), the endpoints of these facets precisely being the
elements of Ext(γ). For x ∈ γ, we define its local roughness to be its Euclidean distance to
C(γ),

LR(x) := d(x, C(γ)).

Our main result concerns the tightness of the length of a typical facet intercepting a given ray
emanating from the origin (resp. the fluctuations of Γ along the facet) at scale N2/3 (resp.
N1/3). Let us first define the quantities of interest.

Definition 3.1.2 (MeanFL, MeanLR). Let γ ∈ Λ. We define MeanFac(γ) to be the
unique facet intersecting the line {y = x} (if we are in the case where the ray {y = x}
intercepts the endpoint of two consecutive facets, we arbitrarily choose the leftmost one for
MeanFac(γ)). We call xmid(γ) the point of N2 ∩ γ that is the closest to the line {y = x}
(as previously, in case of conflict, we arbitrarily choose the leftmost one). Assume that
MeanFac = [a, b](= {at + (1 − t)b, t ∈ [0, 1]}), with a, b ∈ N2. Define the following
random variables,

MeanFL(γ) := d(a, b), MeanLR(γ) := LR(xmid).

In words, MeanFL is the length of MeanFac and MeanLR is the local roughness of the “mean
vertex” of γ.

The following result is the main contribution of the paper.

Theorem 3.1.3 (Tightness ofMeanFL andMeanLR at scalesN2/3 andN1/3). Let 0 < λ < 1
2 .

For any ε > 0, there exist c, C > 0 and N0 ∈ N such that for any N ≥ N0,

PN
2

λ

[
cN

2
3 < MeanFL(Γ) < CN

2
3
]
> 1− ε,
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and,
PN

2

λ

[
cN

1
3 < MeanLR(Γ) < CN

1
3
]
> 1− ε.

We chose for convenience to formulate Theorem 3.1.3 in terms of the statistics of MeanFac.
However, the result is not specific to the choice of the line {y = x}: for any α > 0, the result
holds for MeanFacα, defined to be the unique facet intercepting the line {y = αx} (however
the constants c, C might now depend on α). Indeed, the proof never uses the symmetry of
the model around the line {y = x}.

Remark 3.1.4. In the proof of Theorem 3.1.3, we actually derive a slightly stronger
statement. Indeed, we obtain stretch-exponential upper tails for MeanFL and MeanLR (see
Propositions 3.3.1 and 3.3.2)

Following [74] and [75], our second result identifies the logarithmic corrections to the
maximal facet length and to the maximal local roughness along C(γ). We call these quantities
MaxFL(γ) (resp. MaxLR(γ)).

Theorem 3.1.5. Let 0 < λ < 1
2 . There exist c, C > 0 such that,

PN
2

λ

[
cN

2
3 (logN)

1
3 < MaxFL(Γ) < CN

2
3 (logN)

1
3
]
−−−−→
N→∞

1, (3.1)

and
PN

2

λ [cN
1
3 (logN)

2
3 < MaxLR(Γ) < CN

1
3 (logN)

2
3 ] −−−−→

N→∞
1.

3.1.2 Related works and known results

As pointed out in the introduction, similar models have been studied quite extensively in
the literature, especially in [45], where they are introduced as toy models for the study of
a low-temperature interface of a (1+1)-dimensional SOS model. In this work, the authors
investigate the behaviour of the model at the macroscopic scaleN and at the mesoscopic scale
N1/2. It is possible to extend their result to our setup. To properly state it, we introduce the
following parametrisation of Γ: let Γ(t) be the linear interpolation between the points Γ(k)
for 0 ≤ k ≤ |Γ|. Using the discussion of [45, Section 1], together with the basic estimates
given by Lemma 3.2.1 and Proposition 3.2.4, one can obtain the following result.

Theorem 3.1.6. Let 0 < λ < 1
2 . There exists a deterministic, concave and continuous

function fλ : [0, 1]→ R+ such that for any ε > 0,

PN
2

λ

[
sup
t∈[0,1]

∣∣N−1ΓN (|ΓN |t)− fλ(t)
∣∣ > ε

]
−−−−→
N→∞

0. (3.2)

Remark 3.1.7. Using Lemma 3.2.1, the time scaling in (3.1.6) is linear in N .
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Such a phenomenon is by now very well known under the name of a limit shape phenomenon,
and is known to arise in a large variety of situations (see for instance [100, 90]). In (1+1)
dimensions such as in our setting, two different points of view can be adopted to prove a
statement such as Theorem 3.1.6: the first one is the classical theory of sample path large
deviations culminating with the celebrated Mogulski’i Theorem (see [42, Section 5]). The
second possible point of view has a more statistical mechanics flavour and is known as Wulff
theory (see the reference monograph [47]). In the work [45], it is shown that both approaches
can be implemented and yield the same result. In both cases, the function fλ is identified
as the minimiser of a deterministic variational problem. Let us conclude this discussion by
noticing that actually much stronger statements than (3.1.6) can be obtained, and in particular
large deviations principles for the sample path Γ, though we will not focus on results of this
type.

The main result of [45, Theorem 2.1] focuses on the fluctuations of ΓN around fλ. Again,
minor modifications of their proof lead to the following result.

Theorem 3.1.8. Let 0 < λ < 1
2 . There exists a (centered) Gaussian process ξλ on the

space C([0, 1]) (equipped with the topology of the uniform convergence) such that under the
measure PN2

λ , ( 1√
N

(ΓN (|ΓN |t)−Nfλ(t))
)
t∈[0,1]

(d)−−−−→
N→∞

ξλ,

where the convergence holds in distribution.

These two results can be stated heuristically as follows: at the macroscopic scale N , the
conditioning on the event {A(Γ) ≥ N2} enforces a deterministic and global curvature,
whereas at the mesoscopic scale N1/2 the conditioning has no effect on Pλ and the Gaussian
nature of the measure Pλ is unchanged. As explained above, Theorem 3.1.3 identifies N2/3

as being the scale at which those two competing effects are of the same order.

3.1.3 A resampling strategy

The proofs below heavily relies on a particularly simple (yet crucial) feature of the model:
the so-called Brownian Gibbs property (see [37]). It can be stated as follows: start from a
sample Γ of PN2

λ , choose two points a, b ∈ Γ with any random procedure “explorable from
the exterior1 of the path” (by this we mean that the event {a = x, b = y} is measurable
with respect to Γ \ Γx,y). Then, conditionally on (a, b) and Γ \ Γa,b, the distribution of
the random variable Γa,b is the uniform distribution on Λa→b conditionally on the fact
that the resulting path of Λ encloses an area greater than N2. This apparently naive
observation allows one to implement a strategy of resampling. Indeed, one can construct
several Markovian dynamics on Λ leaving the distribution PN2

λ invariant in a quite general
fashion: start from a sample Γ of PN2

λ , choose two points a, b ∈ Γ according to the above
procedure and replace Γa,b by a sample of the uniform distribution of Γa,b subject to the

1This terminology is directly inspired by the notion of explorable set in percolation theory.
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above-mentioned conditioning. Then, it is clear, thanks to the preceding observation, that
the distribution of the output is PN2

λ . In what follows, we shall call such a dynamic on Λ a
resampling procedure.

This point of view will be used several times in the proofs to analyse marginals of PN2

λ

in well-chosen regions of the first quadrant. A simple illustration is given in the proof of
Proposition 3.2.10.

3.1.4 Open problems

In light of the preceding discussions, two natural questions arise. We now describe
them.

As explained above, we expect the methods developed in this article to help the analysis
of the droplet of a subcritical planar random-cluster model. We strongly believe that our
strategy could complement the results obtained by Hammond in [73, 74, 75]. We provide
strong heuristics towards this result in Section 3.5.

Open Problem A (Droplet boundary in the subcritical planar random-cluster model). Extend
Theorem 3.1.3 to the study of a typical facet in the setup of the droplet in the subcritical
planar random-cluster model.

Once tightness is obtained in Theorem 3.1.3, it is quite natural to try to identify the candidate
for the scaling limit of the excursion below a typical facet. A similar question has been
answered in [83] where the authors obtained convergence (in the bulk phase) of the object of
study to the so-called Ferrari–Spohn diffusion. In our setup, the excursion below the mean
facet should belong to the same universality class, the only difference being that the process
is now an excursion. We intend to study this question in the future.

Open Problem B (Scaling limit of the excursion below a facet). Construct the Ferrari–Spohn
excursion (FSE). Prove that the piece of path lying below the mean facet, after a proper
rescaling, converges to the FSE under PN2

λ in the limit N →∞.

Compared to [83], the study of Open Problem B requires two additional ingredients. Indeed,
one needs a fine understanding of the way that theO(1)N1/3 excursions of sizeN2/3 interact
together along the convex hull of the droplet. Moreover, the construction of FSE and the
proof of the convergence of the mean excursion towards it are non-trivial as the pinning
condition takes place at the scale of the correlation length of the system.

3.1.5 Organisation of the paper

The paper is organised as follows: in Section 3.2, we gather some preliminary results that
are going to be our toolbox for the proofs of the main results. Section 3.3 is then devoted to
the proof of Theorem 3.1.3, while Section 3.4 consists in an adaptation of the arguments
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of [74, 75] to prove Theorem 3.1.5. Finally, Section 3.5 is devoted to a discussion regarding
the extension of the results to other statistical mechanics models in the Wulff setting.

Notations and conventions. We shall adopt Landau formalism for real valued-sequences.
Namely, whenever (an) and (bn) are two real-valued sequences, we will write an = o(bn)
when |an|/|bn| −−−→

n→∞
0. We will also use the notation an = O(bn) when there exists

some constant C > 0 such that |an| ≤ C|bn| for all n large enough. If an = O(bn)
and bn = O(an), we shall write that an ≍ bn. Finally we shall write an ∼ bn when
an/bn −−−→

n→∞
1.

If A is a set, we denote by P(A) the power set of A. For x = (x1, x2) ∈ R2, ∥x∥ :=√
x21 + x22 denotes the Euclidean norm of x. If S ⊂ R2 is a Borel set, we denote by |S|

its Lebesgue measure. Moreover, for x ∈ Z2 we will write arg(x) ∈ [0, 2π) to denote the
complex argument of x seen as an element of C. For t ∈ R, ⌊t⌋ will denote the integer part
of t and ⌈t⌉ := inf{k ∈ Z, k ≥ t}.

Acknowledgements. We warmly thank Alan Hammond, who suggested the problem, for
numerous stimulating discussions and precious writing advices. We also warmly thank Ivan
Corwin for suggesting this collaboration and for stimulating discussions. We thank Raphaël
Cerf, Trishen S. Gunaratnam, Ioan Manolescu and Yvan Velenik for inspiring discussions at
various stages of the project. LD was supported by the Swiss National Science Foundation
grant n°182237. RP was supported by the NSF through DMS-1811143, the Swiss National
Science Foundation and the NCCR SwissMAP.

3.2 Preliminary results

In the rest of this work, we fix 0 < λ < 1
2 .

3.2.1 Basic statistics of typical samples of PN2

λ

In this subsection, we study some basic properties of a typical sample of PN2

λ .

Lemma 3.2.1 (Tail estimates for the length of a sample of PN2

λ ). There exist c, C > 0 such
that for any N ≥ 1, any t ≥ 0,

PN
2

λ [|Γ| ≥ tN ] ≤ Ce−cN(t−2
√
2).

Proof. It is clear that

PN
2

λ [|Γ| ≥ tN ] ≤ Pλ [|Γ| ≥ tN ]

Pλ [A(Γ) ≥ N2]
.
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An easy computation yields

Pλ [|Γ| ≥ tN ] =
1

Zλ

∑
k≥⌊tN⌋

(2λ)k = (2λ)⌊tN⌋.

It remains to lower bound Pλ
[
A(Γ) ≥ N2

]
. Let y(Γ) (resp. x(Γ)) be the y-coordinate (resp.

x-coordinate) of the first (resp. last) vertex of Γ. The measure Pλ conditioned on (y(Γ), x(Γ))
is exactly the uniform measure over path starting at (0, y(Γ)) and ending at (x(Γ), 0). We
claim that

Pλ
[
A(Γ) ≥ N2 | (y(Γ), x(Γ)) = (⌈

√
2N⌉, ⌈

√
2N⌉)

]
≥ 1

2
.

Indeed, the square formed by the vertices (0, ⌈
√
2N⌉), (⌈

√
2N⌉, ⌈

√
2N⌉), (⌈

√
2N⌉, 0) and

(0, 0) has an area at least equal to 2N2. Hence, a symmetry argument shows that the proportion
of oriented paths starting at (0, ⌈

√
2N⌉) and ending at (⌈

√
2N⌉, 0) that fulfill the requirement{

A(Γ) ≥ N2
}

is at least 1/2. By a standard computation, we find c1 = c1(λ) > 0 such that,
for all N ≥ 1,

Pλ
[
(y(Γ), x(Γ)) = (⌈

√
2N⌉, ⌈

√
2N⌉)

]
=

1

Zλ
λ2⌈

√
2N⌉
(
2⌈
√
2N⌉

⌈
√
2N⌉

)
≥ c1(2λ)2

√
2NN−1/2.

Putting all the pieces together

PN
2

λ [|Γ| ≥ tN ] ≤ c−1
1

√
N(2λ)tN (2λ)−2

√
2N .

The proof follows readily.

This tail estimate allows us to argue that a typical sample of PN2

λ stays confined between two
balls of linear radii with very high probability. For K ≥ 0, let BK be the Euclidean ball of
radius K centered at 0.

Lemma 3.2.2 (Confinement lemma). There exist K1,K2, c, C > 0 such that for all N ≥ 1,

PN
2

λ [Γ ⊂ BK1N \BK2N ] ≥ 1− Ce−cN .

Proof. Using Lemma 3.2.1 and a simple geometric observation, we get that for K1 ∈ N>0,

PN
2

λ [Γ ∩ (BK1N )
c ̸= ∅] ≤ PN

2

λ [|Γ| ≥ K1N ]

≤ Ce−c(K1−2
√
2)N ,

which gives that Γ ⊂ BK1N with high probability for K1 > 2
√
2.

For the second part of the statement, notice that the area of a path that is contained in
BK1N and intersects BKN (for K < K1) is necessarily smaller than 2K1KN

2. Choosing
K2 < 1/(2K1) so that the preceding quantity is smaller than N2 yields that

PN
2

λ [Γ ∩BK2N ̸= ∅,Γ ∩ (BK1N )
c = ∅] = 0.
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Hence,

PN
2

λ [Γ ∩BK2N ̸= ∅] = PN
2

λ [Γ ∩BK2N ̸= ∅,Γ ∩ (BK1N )
c ̸= ∅] + 0

≤ PN
2

λ [Γ ∩ (BK1N )
c ̸= ∅] ,

and the result follows.

In what follows, K1,K2 will always denote the constants given by Lemma 3.2.2.

The following quantity will be of particular interest for the rest of this work.

Definition 3.2.3 (Excess area). The excess area of a path γ ∈ ΛN
2 is the quantity

ExcessArea(γ) defined by

ExcessArea(γ) := A(γ)−N2.

Since PN2

λ exponentially penalizes long paths, we may expect the typical area of a path to
be close to N2. The following result quantifies this observation and will be very useful
later.

Proposition 3.2.4 (Tail behaviour of ExcessArea). There exists c > 0 such that for all
0 ≤ t ≤ N ,

PN
2

λ [ExcessArea(Γ) ≥ tN ] ≤ 2e−ct.

The idea of the proof is simple. By Lemma 3.2.1, a sample Γ of PN2

λ has a length of order N .
Assume that this path satisfies A(Γ) > N2 + tN . If we remove its first t steps we obtain a
path of area (roughly) at least N2 and which is exponentially (in t) favoured by PN2

λ .

Proof. If A is any subset of ΛN2 , we shall write ZN2

λ [A] =
∑

γ∈A λ
|γ| for the partition

function of A. We will also write ZN2

λ := ZN
2

λ [ΛN
2
]. By definition,

PN
2

λ [ExcessArea(Γ) ≥ tN, Γ ⊂ BK1N\BK2N ] =
1

ZN
2

λ

∑
K2N≤a,b≤K1N

λa+b
∑

γ:(0,a)→(b,0)
A(γ)≥N2+tN

1.

If γ : (0, a)→ (b, 0) with K2N ≤ a, b ≤ K1N , call c = c(γ) the y-coordinate of the point
of γ of x-coordinate ⌊t/K1⌋. Splitting the path γ at the point of coordinates (⌊t/K1⌋, c)
splits γ into a pair of elements of Λ (after translation) that we denote by (γ1, γ2), where
γ1 is a path from (0, a − c) to (⌊t/K1⌋, 0) and γ2 is an element of ΛN

2 from (0, c) to
(b− ⌊t/K1⌋, 0). As a result,

∑
γ:(0,a)→(b,0)
A(γ)≥N2+tN

1 ≤
a∑
c=0

∣∣Λ(0,a−c)→(⌊t/K1⌋, 0)
∣∣ · ∣∣Λ(0,c)→(b−⌊t/K1⌋),0)

N2

∣∣,
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where Λx→y is the set of path of starting at x and ending at y, and the subscript N2 accounts
for the condition of enclosing an area of at least N2. Now, notice that

K1N∑
b=K2N

λc+b−⌊t/K1⌋
∣∣Λ(0,c)→(b−⌊t/K1⌋,0)

N2

∣∣ ≤ ZN2

λ [y(Γ) = c],

where we recall that y(γ) is the y-coordinate of the starting point of γ. Recall also that x(γ)
is the x-coordinate of the last point of γ. Hence,∑

K2N≤a,b≤K1N

λa+b
∑

γ:(0,a)→(b,0)
A(γ)≥N2+tN

1

≤
K1N∑

a=K2N

a∑
c=0

∣∣Λ(0,a−c)→(⌊t/K1⌋,0)
∣∣λa−c+⌊t/K1⌋ZN

2

λ [y(Γ) = c]

≤
K1N∑
c=0

ZN
2

λ [y(Γ) = c]
∑
a≥c
|Λ(0,a−c)→(⌊t/K1⌋,0)

∣∣λa−c+⌊t/K1⌋

≤
K1N∑
c=0

ZN
2

λ [y(Γ) = c]Zλ[x(Γ) = ⌊t/K1⌋]

≤ ZN2

λ Zλ[|Γ| ≥ ⌊t/K1⌋]

≤ ZN2

λ (2λ)⌊t/K1⌋.

The proof follows readily.

3.2.2 Non-existence of large flat sections of a typical sample of
PN2

λ

In the analysis of samples of PN2

λ in given angular sectors, we will sometimes need to ensure
that the marginal is not “degenerate” in the sense that it is not supported on “flat” paths (i.e
almost horizontal / vertical paths). Because of the oriented feature of the model, this is an
additional difficulty in comparison to the setup of subcritical statistical mechanics models,
where it is often known thanks to the Ornstein–Zernike theory that the surface tension is
analytic and bounded away from 0 and infinity (see for instance [25, Theorem A]).

Let A be a cone of apex the origin in the first quadrant of angle ΘA ∈ (0, π/2]. For γ ∈ ΛN
2 ,

let xA = xA(γ) (resp yA = yA(γ)) be the left-most (resp. right-most) point of γ ∩A. Also,
recall that the set Λx→y ⊂ Λ consists of all the oriented path going from x to y. Observe
that if γ is a path of Λ containing x and y, then there is a natural notion of restriction of γ
between x and y: it is the only element of Λx→y which coincides with γ between x and y.
We also denote by θ(xA, yA) ∈ [0, π/2] the angle formed by the segment [xA, yA] and the

69



3.2. PRELIMINARY RESULTS

horizontal line going trough xA. For ε > 0, we define the following events

Bad+ε,A :=
{
γ ∈ ΛN

2
, θ(xA, yA) ∈ [0, ε]

}
,

and,
Bad−ε,A :=

{
γ ∈ ΛN

2
, θ(xA, yA) ∈ [π2 − ε,

π
2 ]
}
.

Proposition 3.2.5. There exist ε > 0 and c = c(ε), C = C(ε) > 0 such that, for any cone
A as above,

PN
2

λ

[
Γ ∈ Bad+ε,A ∪ Bad−ε,A

]
≤ CEN2

λ

[
e−c∥xA(Γ)−yA(Γ)∥].

For the proof of Proposition 3.2.5, we will use a probabilistic version of the multi-valued
map principle, stated and proved in the appendix (Lemma 3.5.3).

Proof of Proposition 3.2.5. We are going to create an appropriate multi-valued map T ,
transforming a path belonging to Bad+ε,A to another path of ΛN2 \Bad+ε,A, in such a way that
this map has a lot of possible images but very few pre-images, and such that the probability of
one element of the image of a path γ ∈ Bad+ε,A by T is not too small compared to PN2

λ [γ].

A

xA(γ)

yA(γ)

γ Surg(γ,H) = γ̃

A

θ(xA, yA)

Figure 3.2: An illustration of the effect of the surgery map Surg(γ,H). The cone A is the
light green region. The ηk edges of H that have been selected are the blue ones, and the
vertical edges that have been added are depicted in red. We observe that the angle θ(xA, yA)
increases in Surg(γ,H).

Let η > 0 be a small parameter to be fixed later. For γ ∈ ΛN
2 , we denote by ℓA = ℓA(γ)

the length of the section of the path enclosed by A, that is, ℓA(γ) = |γxA,yA |. We first define
a surgical procedure modifying γ: ifH is some subset of the set of the horizontal steps of γ
inside A, we set Surg (γ,H) to be the new path obtained by adding a vertical step just before
each step belonging toH (see Figure 3.2). We are going to apply this procedure forH being
a proportion η of the horizontal steps that γ makes in A. Of course to be able to do so we
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need to ensure that the paths γ we apply the map to already contain a proportion at least η of
horizontal steps in A. Since we will apply the map to elements of Bad+ε,A, we expect the
proportion of horizontal steps to be quite large. Indeed, if γ ∈ Bad+ε,A, and if α(γ) is the
proportion of vertical steps in the piece of path of γ in A, then one has that

ε ≥ arctan

(
α(γ)

1− α(γ)

)
, (3.3)

so that α(γ) ≤ tan(ε) ≤ 2ε (if ε is small enough). For technical reasons, it will also be
convenient to work on a set of paths for which ℓA is fixed. Introduce, for k ≥ 1,

Ak := Bad+ε,A ∩ {ℓA = k} ∩ ΛN
2
,

and
Bk := {k ≤ ℓA ≤ (1 + η)k} ∩ ΛN

2
.

Define the multi-valued map Tη,k : Ak → P(Bk) by setting for any γ ∈ Ak,

Tη,k(γ) = {Surg(γ,H), |H| = ηk}.

We notice that for γ ∈ Ak, Tη,k(γ) ⊂ ΛN
2 . Indeed, the area can only increase under the

action of Surg(γ,H), for anyH being a subset of the horizontal steps of γ. Moreover, after
the surgery, the length of a path inside A has increased by at most ηk. Thus, the map Tη,k is
well-defined. We will consider the probability measures PN2

λ on Ak and Bk. This way, we
are exactly in the setting of Lemma 3.5.3. Introducing

φ(Tη,k) := max
a∈Ak

max
b∈Tη,k(a)

PN2

λ [a]

PN2

λ [b]
, ψ(Tη,k) :=

maxb∈B̃k

∣∣T−1
η,k (b)

∣∣
mina∈Ak

∣∣Tη,k(a)∣∣ ,
where B̃k := Im(Tη,k). A direct application of Lemma 3.5.3 yields that

PN
2

λ [Ak] ≤ φ(Tη,k)ψ(Tη,k)PN
2

λ [Bk]. (3.4)

We are now left with estimating φ(Tη,k) and ψ(Tη,k).

We start by observing that Surg(γ,H) increases the length of a path γ by |H| units, so that
for any γ ∈ Ak and γ̃ ∈ Tη,k(γ), the ratio defining φ is constant, and given by

φ(Tη,k) = λ−ηk.

Now, our task is to bound ψ(Tη,k). Let γ ∈ Ak. Then, it is clear that

∣∣Tη,k(γ)∣∣ ≥ ((1− α(γ))k
ηk

)
≥
(
(1− 2ε)k

ηk

)
,
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3.2. PRELIMINARY RESULTS

where α(γ) is the proportion of vertical steps in the piece of path of γ in A and where we
used (3.2.2) to get that α(γ) ≤ 2ε (if ε is small enough). Next, we have to bound

∣∣∣T−1
η,k (γ̃)

∣∣∣,
for γ̃ ∈ B̃k. Some vertical steps may have been pushed outside the sector A by the effect of
Tη,k, and we must explore them to reconstruct γ knowing Tη,k(γ). Since at most ηk of these
steps disappeared in A, we obtain

∣∣T−1
η,k (γ̃)

∣∣ ≤ ((2ε+ 2η)k

ηk

)
.

Putting all the pieces together and using (3.2.2), we obtain

PN
2

λ [Ak] ≤ λ−ηk
((2ε+2η)k

ηk

)((1−2ε)k
ηk

) PN2

λ [Bk].

Standard estimates2 yield that, as k →∞,

λ−ηk

((2ε+2η)k
ηk

)((1−2ε)k
ηk

) ∼ exp(−k[(1− 2ε)I

(
η

1− 2ε

)
− (2ε+ 2η)I

(
η

2ε+ 2η

)
+ η log λ]),

where for x ∈ (0, 1), I(x) := −x log x− (1− x) log(1− x).

Set
cε,η = (1− 2ε)I

(
η

1− 2ε

)
− (2ε+ 2η)I

(
η

2ε+ 2η

)
+ η log λ.

It is easy to check that one can find a pair ε, η(ε) > 0 satisfying cε,η(ε) > 0. Let us fix such
an ε > 0 and drop η from the notations. We obtained that there exists C = C(ε) > 0 such
that for k ≥ 1,

λ−ηk

((2ε+2η)k
ηk

)((1−2ε)k
ηk

) ≤ Ce−cεk.
Hence,

PN
2

λ [Γ ∈ Bad+ε,A, ℓA = k] ≤ Ce−cεkPN2

λ [k ≤ ℓA ≤ (1 + η)k].

Summing over k we finally obtain the existence of c1 = c1(ε), C1 = C1(ε) such that

PN
2

λ

[
Γ ∈ Bad+ε,A

]
≤ C1EN

2

λ

[
e−c1ℓA

]
≤ C1EN

2

λ

[
e−c1∥xA(Γ)−yA(Γ)∥].

A similar argument holds for Bad−ε,A. This concludes the proof.

2For any c1 < c2, as k →∞, (
c2k

c1k

)
∼ e

c2kI
(

c1
c2

)
.
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3.2.3 Couplings between PN2

λ and a conditioned random walk

This subsection is devoted to the description of two couplings between the measure PN2

λ

conditioned on a pinning event and the law of a random walk bridge. We first describe and
prove the existence of these couplings and then explain what they will be useful for.

Let a, b ∈ N2 such that arg(a) > arg(b). We introduce the event Fac(a, b) defined by

Fac(a, b) := {γ ∈ Λ, The segment [a, b] is a facet of γ} .

Recall that the set Λa→b ⊂ Λ consists of all the oriented path going from a to b. We introduce
the following partial order in the set Λa→b: for γ1, γ2 ∈ Λa→b, we shall say that γ1 ≥ γ2

when
∀(x1, y1) ∈ γ1, (x2, y2) ∈ γ2, x1 = x2 ⇒ y1 ≥ y2.

Finally, we denote by P−
a,b the uniform measure over all the paths of Λa→b that remain under

the segment [a, b].

With these definitions in hand, we are now able to describe the first coupling.

Proposition 3.2.6. Let a and b be two vertices of N2 such that arg(a) > arg(b). There exists
a probability measure Ψ on the space Λa→b × Λa→b such that:

(i) the marginal of Ψ on its first coordinate has the law of Γa,b where Γ is sampled
according to PN2

λ [ · | Fac(a, b)],

(ii) the marginal of Ψ on its second coordinate has law P−
a,b,

(iii) Ψ
[
{(γ1, γ2) ∈ Λa→b × Λa→b, γ1 ≥ γ2}

]
= 1.

Proof. The proof relies on a dynamical Markov chain argument and is, for percolation
aficionados, very similar to that of Holley’s inequality (see for instance [71]).

We shall start from the restriction of a sample of PN2

λ [ · | Fac(a, b)] to Λa→b that we denote
Γa,b, and then describe two Markovian dynamics (Γ1

k)k≥0 and (Γ2
k)k≥0 on the state space

Λa→b with the following properties:

(P1) Γ1
0 = Γ2

0 = Γa,b,

(P2) ∀k ≥ 0, Γ1
k ≥ Γ2

k,

(P3) the law of Γa,b is the stationary measure of the Markov chain (Γ1
k)k≥0,

(P4) P−
a,b is the stationary measure of the Markov chain (Γ2

k)k≥0.

Now, let us describe the Markovian dynamics. Let p = ∥a− b∥1 be the length of any path
of Λa→b. Let (ℓk)k≥0 be a family of independent random variables all having a uniform
distribution on {1, . . . , p− 1}, and (Xk)k≥0 a family of independent random variables all
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having a uniform distribution on {0, 1}. At step k, the random variable ℓk is the position of
the vertex on which we will proceed a random modification.

Looking at the two edges incident to the vertex Γik(ℓk) for i ∈ {1, 2}, three different
configurations can arise:

1) If these two edges are co-linear, we do not modify anything: Γik+1 = Γik for i ∈ {1, 2}.

2) If these edges form a corner of the type

(i) For Γ1 we flip the corner into the opposite corner if and only if we haveXk = 1
and the modified path does not go above the facet [a, b]. If any of these two
conditions is not verified, we do not modify Γ1

k.

(ii) We apply the same procedure for Γ2.

3) If these edges form a corner of the type

(i) For Γ1, we flip this corner into the opposite corner if and only if Xk = 1 and
the area enclosed by this new path is still greater than N2. If any of these two
conditions is not verified we do not modify Γ1

k.

(ii) For Γ2, we flip the corner into the opposite one if and only if Xk = 1.

It is straightforward that these Markov dynamics are irreducible, aperiodic, and reversible.
Then,Γ1 (resp. Γ2) admits a stationnary measure and converges towards it: it is straightforward
to see that this stationary measure is the law of Γa,b (resp P−

a,b). Moreover, by construction,
one always has Γ1 ≥ Γ2. This yields the desired stochastic domination.

This coupling will be very efficient when computing local statistics of a sample of PN2

λ along
a facet (e.g. the local roughness along a facet) as it allows us to compare them to the ones
of a random walk excursion on which we know much more information. More precisely,
Proposition 3.2.6 has the following consequence: an upper bound on the length of a facet
automatically converts into an upper bound on the local roughness under this facet.

Lemma 3.2.7. There exist c, C,N0 > 0 such that the following holds. For any a, b ∈ N2

with arg(a) > arg(b) and ∥b− a∥ ≥ N0 and any t ≥ 0,

PN
2

λ

[
max
x∈Γa,b

LR(x) > t∥b− a∥1/2
∣∣ Fac(a, b)] ≤ C exp(−ct2).

Proof. Observe that thanks to Proposition 3.2.6, the random variable maxx∈Γa,b
LR(x) where

Γ is sampled according to PN2

λ [ · | Fac(a, b)] is stochastically dominated by the random
variable maxx∈ωa,b

LR(x) where ωa,b is sampled according to P−
a,b.

The statement then follows by classical random walks arguments. Indeed, the results of [28]
imply that a lattice random walk bridge conditioned to stay below a line segment with
increments having exponential tails, after subtraction of the linear term corresponding to
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the equation of that segment, converges towards the standard Brownian excursion. As a
consequence, knowing the fluctuations of the Brownian excursion (see [36]) on an interval of
size ∥b− a∥ leads to the bound

P−
a,b

[
max
x∈ωa,b

LR(x) ≥ t∥b− a∥1/2
]
≤ C exp(−ct2),

when ∥b− a∥ is large enough.

Remark 3.2.8. In Section 3.4, we will use the preceding result in the regime t =
(log ∥b− a∥)α for some power 0 < α < 1. We claim that the result still holds true
and is a consequence of classical moderate deviations estimates for random walks (see [41]).

The second coupling we shall need is closely related to the first one with the only exception
that we do not assume that [a, b] is a facet anymore. This time, we will build an “increasing
coupling” (in the sense of the partial order of Λa→b) between the law of Γa,b where Γ is
sampled according to PN2

λ [ · | a, b ∈ Γ] and the distribution of the random walk bridge
between a and b. We denote by Pa,b the uniform distribution on Λa→b.

Proposition 3.2.9. Let a and b be two vertices of N2 such that arg(a) > arg(b). There exists
a probability measure Ψ on the space Λa→b × Λa→b such that:

(i) the marginal of Ψ on its first coordinate has the law of Γa,b where Γ is sampled
according to PN2

λ [ · | a, b ∈ Γ],

(ii) the marginal of Ψ on its second coordinate has law Pa,b,

(iii) Ψ
[
{(γ1, γ2) ∈ Λa→b × Λa→b, γ1 ≥ γ2}

]
= 1.

Proof. The proof follows the strategy used to obtain Proposition 3.2.6 except that we do not
have the condition of not going above the segment [a, b] anymore.

3.2.4 A rough upper bound on the length of a typical facet

The goal of this section is to give an illustration of the resampling strategy which will be
used throughout the paper. The result proved in this section will also be useful for the proof
of the upper bounds of Theorem 3.1.3.

Proposition 3.2.10. Let ε > 0. There exist c = c(ε), C = C(ε) > 0 such that, for all
1 ≤ t ≤ N2/3−ε.

PN
2

λ

[
MeanFL(Γ) ≥ tN

2
3
+ε
]
≤ Ce−ct3/2N3ε/2

. (3.5)

Moreover, there exists c′, C ′ > 0 such that, for all t ≥ 1

PN
2

λ

[
MeanFL(Γ) ≥ tN

4
3
]
≤ C ′e−c

′tN4/3
.
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Before proving this result, we need to define an event which we will ask the resamplings to
satisfy in order to ensure they capture a large enough area.

Let us first recall and introduce some notations. For x, y ∈ N2, let Ax,y be the cone of apex
0 bounded by x and y and let T0,x,y be the triangle of apexes 0, x and y. For a cone Ax,y and
γ ∈ Λ, we define Enclose(γ ∩Ax,y) to be the region delimited by γ and the two boundary
axes of Ax,y. The following event, illustrated in Figure 3.3, will be the one we will require
our resampling to satisfy.

Definition 3.2.11 (Good area capture). Let γ ∈ Λ be a path, η > 0 and x, y ∈ N2. We say
that γ realises the event GAC (x, y, η) (meaning “good area capture”) if

(i) γ ∩Ax,y ∈ Λx→y, or in words, γ connects x and y by a oriented path,

(ii) |Enclose(γ ∩Ax,y)| − |T0,x,y| ≥ η ∥ x− y ∥
3
2 .

x

y

Ax,y

Figure 3.3: An illustration of the event GAC (x, y, η). The light green shaded region
corresponds to Enclose(γ ∩Ax,y). The event that the path γ satisfies GAC (x, y, η) means
that the (algebraic) area of the orange hatched region exceeds η∥x− y∥3/2.

Proof of Proposition 3.2.10. Let 1 ≤ t ≤ N2/3−ε. Introduce the event

BigMeanFL(t) :=
{
MeanFL(Γ) ≥ tN

2
3
+ε
}
.

We pick uniformly at random, and independently of Γ, two points x,y (with arg(x) > arg(y))
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in BK1N and call GoodHit the event that these two points coincide with the extremities of
MeanFac. The measure associated with this procedure is denoted P.

Let us call Bad+,−ε the event that θ(x, y) ∈ [0, ε) ∪ (π/2 − ε, π/2] for the ε > 0 given by
Proposition 3.2.5. Let E := GoodHit ∩ (Bad+,−ε )c ∩ {Γ ⊂ BK1N \ BK2N}. Resample Γ
between x and y according to the uniform law among paths γ ∈ Λx→y such that (Γ\Γx,y)∪γ
satisfies the area condition and call Γ̃ the resampling. Note that Γ̃ has law PN2

λ .

Since we are resampling along a facet, if (Γ, (x,y)) realises E , then Γx,y lies underneath
the segment joining x and y. Thus, if (Γ, (x,y)) ∈ E , replacing Γx,y by any path satisfying
GAC(x,y, η) still satisfies the area condition and3

P⊗ PN
2

λ [Γ̃ ∈ GAC(x,y, η) | (Γ, (x,y)) ∈ BigMeanFL(t) ∩ E ] ≥ Px,y[GAC(x,y, η)].
(3.6)

where we recall that Pa,b is the uniform law on Λa→b. Indeed, conditioning on (Γ, (x,y)) ∈
BigMeanFL(t) ∩ E , the above inequality is equivalent to

|{γ ∈ Λx→y, γ ∈ GAC(x,y, η)}|
|{γ ∈ Λx→y, (Γ \ Γx,y) ∪ γ ∈ ΛN2}|

≥ |{γ ∈ Λx→y, γ ∈ GAC(x,y, η)}|
|Λx→y|

,

which is trivially true. Now, if θ(x,y) ∈ [ε, π/2− ε], standard computations on the simple
random walk bridge (see Lemma 3.3.4 for more details) ensure that for η > 0 sufficiently
small there exists c1 = c1(η, ε) > 0 such that,

Px,y[GAC(x,y, η)] ≥ c1.

Notice also that

{Γ̃ ∈ GAC(x,y, η), (Γ, (x,y)) ∈ BigMeanFL(t) ∩ E} ⊂
{
ExcessArea(Γ̃) ≥ ηt

3
2N1+ 3

2
ε
}
.

Putting all the pieces together, and using the fact that Γ̃ has law PN2

λ ,

P⊗ PN
2

λ [BigMeanFL(t) ∩ E ] ≤ c−1
1 PN

2

λ

[
ExcessArea(Γ) ≥ ηt

3
2N1+ 3

2
ε
]
.

Finally, notice that for some c2 > 0,

P⊗ PN
2

λ [GoodHit | BigMeanFL(t) ∩ {Γ ⊂ BK1N \BK2N}] ≥
c2
N4

.

Putting all the pieces together,

PN
2

λ [BigMeanFL(t)] ≤ N4

c2
· P⊗ PN

2

λ [BigMeanFL(t) ∩ E ]

+
N4

c2
· P⊗ PN

2

λ [BigMeanFL(t) ∩ GoodHit ∩ (Bad+,−ε ) ∩ {Γ ⊂ BK1N \BK2N}]

+ PN
2

λ [BigMeanFL(t) ∩ {Γ ⊂ BK1N \BK2N}c] .

3We use the fact that GAC (x,y, η) can be seen as an event on Λx→y and for convenience we keep the same
notation when looking at this event under the two measures of interest.
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To bound the second term we use Proposition 3.2.5 above. Notice that,

BigMeanFL(t) ∩ GoodHit ∩ (Bad+,−ε ) ∩ {Γ ⊂ BK1N \BK2N}

⊂
⋃

u,v∈BK1N
\BK2N

∥u−v∥≥tN
2
3+ε

{
Γ ∈ Bad+ε,Au,v

∪ Bad+ε,Au,v

}
,

where Au,v is the cone of apex 0 bounded by u and v. Finally, apply Lemma 3.2.2,
Proposition 3.2.4, and Proposition 3.2.5 to get that for some c = c(ε) > 0,

PN
2

λ [BigMeanFL(t)] ≤ N4

c2
·c−1
1 ·exp(−ct

3
2N

3
2
ε)+

N4

c2
·(K1N)4·2 exp(−ctN

2
3
+ε)+exp(−cN),

and thus the first inequality (recall that t ≤ N2/3−ε).

For t ≥ 14 notice that

PN
2

λ

[
MeanFL(Γ) ≥ tN

4
3
]
≤ PN

2

λ

[
|Γ| ≥ (tN1/3) ·N

]
.

Using Lemma 3.2.1 we get the result.

3.3 Analysis of the mean facet length and the mean local
roughness

3.3.1 Upper bounds

In the following subsection, we actually prove a stronger statement than the upper bounds of
Theorem 3.1.3. Recall that MeanFL and MeanLR where defined in Definition 3.1.2. The
goal of this subsection is to prove upper tail estimates on MeanFL and MeanLR. Our first
result is a refinement of Proposition 3.2.10.

Proposition 3.3.1 (Upper tail of MeanFL). There exist c̃, c, C > 0 such that, for any
c̃ ≤ t ≤ N2/3,

PN
2

λ

[
MeanFL(Γ) ≥ tN

2
3
]
≤ Ce−ct3/2 .

Proposition 3.3.2 (Upper tail of MeanLR). There exist c̃, c, C > 0 such that for any
c̃ ≤ t ≤ N5/6,

PN
2

λ

[
MeanLR(Γ) ≥ tN

1
3
]
≤ Ce−ct6/5 .

Remark 3.3.3. For larger values of t, we can use Lemma 3.2.1 and Proposition 3.2.10 to get
explicit tails for MeanFL and MeanLR. In particular, we obtain that

lim sup
N→∞

EN
2

λ

[
MeanFL(Γ)

N2/3

]
<∞, lim sup

N→∞
EN

2

λ

[
MeanLR(Γ)

N1/3

]
<∞.

4In fact, one can take t ≥ 3
√
2N−1/3 here.
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We keep the notations of Section 3.2.4. We will again use the event GAC (x, y, η) introduced
in Definition 3.2.11. While it is difficult to estimate the probability of the event GAC (x, y, η)
under PN2

λ , it is much simpler to estimate it under Px,y which is the uniform law over Λx→y

(assuming that we chose x, y ∈ N2 such that Λx→y ̸= ∅). The following result, whose proof
is postponed to the appendix, gives us a lower bound on Px,y[GAC (x, y, η)]. Denote by
θ(x, y) ∈ [0, π/2] the angle formed by the horizontal axis and the segment joining x and
y.

Lemma 3.3.4. Let ε, η > 0. There exist c = c(ε, η) > 0 and N0 = N0(ε, η) > 0 such that
for any x, y ∈ N2 satisfying Λx→y ̸= ∅, ε ≤ θ(x, y) ≤ π/2− ε and ∥x− y∥ ≥ N0,

Px,y[GAC (x, y, η)] ≥ c.

Remark 3.3.5. 1. The constant c(ε, η) in the result above degenerates as ε→ 0. However,
as we saw in Proposition 3.2.5, up to an event of small probability, we will be able to
assume that θ stays bounded away from 0 and π/2.

2. The constant c̃ in the statement of Propositions 3.3.1 and 3.3.2 will be chosen in terms
of N0 = N0(ε, η) for ε given by Proposition 3.2.5 and a properly chosen η > 0.

Proof of Proposition 3.3.1

As in the proof of Proposition 3.2.10, we would like to resample along the mean facet.
However, as we saw, to pick the extremities of the mean facet without revealing any information
about the path Γ comes with a cost of O(N4). This cost was previously handled by the
requirement that t ≥ N ε, but now we allow t to be of smaller order. To tackle this difficulty,
we will not resample between the exact extremities of the mean facet but between points
which approximate them (see Figure 3.4).

Proof of Proposition 3.3.1. Let t > 0 be fixed, and let δ, ε > 0 be two small parameters that
will be fixed later. Thanks to Proposition 3.2.10, we can additionally assume that t ≤ N ε for
some ε ∈ (0, 1/3). Indeed, if N ε ≤ t ≤ N2/3, using (3.2.10), we get

PN
2

λ

[
MeanFL(Γ) ≥ (tN−ε)N2/3+ε

]
≤ Ce−ct3/2 .

We now assume t ≤ N ε. Let us introduce the following event

BigMeanFL(t) =
{
MeanFL(Γ) ≥ tN

2
3

}
.

We also introduce, for any integer k ≥ 1,

BigMeanFLk(t) =
{
ktN

2
3 ≤ MeanFL(Γ) < (k + 1)tN

2
3

}
,

so that the family (BigMeanFLk(t))k≥1 partitions the event BigMeanFL.
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Notice that for large values of k, we can use Proposition 3.2.10 again to conclude. If kN (ε, t)
is the smallest k ≥ 1 such that tk ≥ N ε, using (3.2.10) again,

PN
2

λ

[
MeanFL(Γ) ≥ tkN (ε, t)N

2
3

]
≤ Ce−c(tkN )3/2 .

In particular it suffices to control the probabilities of BigMeanFLk(t) for 1 ≤ k ≤ kN (ε, t).
In fact, it is sufficient to control the probabilities of BigMeanFLk(t/3) for 3 ≤ k ≤
kN (ε, t/3) = 3kN (ε, t). We now let s = t/3 and kN = kN (ε, s).

Fix 3 ≤ k ≤ kN . For j ≥ 0, define the angles

θ+j = θ+j (δ, k) :=
π

4
+ arctan

(
jδks

N1/3

)
, θ−j = θ−j (δ, k) :=

π

4
− arctan

(
jδks

N1/3

)
,

and denote ℓ+j = ℓ+j (δ, k) (resp. ℓ−j = ℓ−j (δ, k)) the half-line rooted at the origin and of
argument θ+j (resp. θ−j ).

When BigMeanFLk(s) occurs, there are at most 2/δ indices j such that ℓ+j (resp. ℓ−j )
intersects the mean facet. For a sample Γ and 0 ≤ j ≤ 2/δ, we call aj = aj(Γ, δ, k) (resp.
bj = bj(Γ, δ, k)) the points of N2 that are the closest5 to the intersection between Γ and ℓ+j
(resp. ℓ−j ). Observe that these points are defined from Γ by a deterministic procedure which
means that resampling a sample Γ between two of these points yields an output distributed
according to PN2

λ . In particular, we can define a = a(Γ, δ, k) (resp. b = b(Γ, δ, k)) to be
the point of Γ defined as follows: if j0 (resp. j1) is the largest j such that ℓ+j (resp. ℓ−j )
intersects the mean facet, then a = aj0 (resp. b = bj1).

In order to be able to pick a and b and resample between them without revealing the portion
Γa,b of Γ between a and b, we introduce some extra randomness. We pick uniformly, a
pair of points (x,y) in {aj , 0 ≤ j ≤ 2/δ} × {bj , 0 ≤ j ≤ 2/δ} and call P the measure
associated with this random procedure. Let GoodHitk be the event that (x,y) = (a,b). We
are going to show that with uniformly positive probability, if we resample between a and b,
the resampled path captures a linear excess of area, an event which is exponentially unlikely
by Proposition 3.2.4.

As in the proof of Proposition 3.2.10, let us callBad+,−ε the event that θ(x, y) ∈ [0, ε)∪(π/2−
ε, π/2] for the ε > 0 given by Proposition 3.2.5. Write Ek := GoodHitk∩ (Bad+,−ε )c∩{Γ ⊂
BK1N \BK2N}. Resample Γ between x and y according to the uniform law among paths
γ ∈ Λx→y such that (Γ \ Γx,y) ∪ γ satisfies the area condition and call Γ̃ the resampling.
Note that Γ̃ has law PN2

λ . In the proof of Proposition 3.2.10, since we were resampling
along the mean facet, it was clear that replacing the path below the facet by any path having
a positive area (above the facet) kept the total area condition. However, in our case, the

5There might be ambiguity in the choice of such points and we solve this issue by asking aj (resp. bj) to lie
on the right (resp. on the left) of ℓ+j (resp. ℓ−j ).
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a

b

{y = x}

Figure 3.4: Illustration of the proof of Proposition 3.3.1. The original is path depicted in
black. With large probability, the new resampled blue path captures an amount of area
sufficient to compensate the area that could have been lost (in turquoise) due to the fact that a
and b do not exactly coincide with the endpoints of the red facet. The event SD ensures that
a and b are not atypically far from these two endpoints, allowing us to control the area of the
turquoise region.
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approximate “mean facet resampling” comes with a potential area loss. This possibility is
ruled out for sufficiently small values of δ. For η > 0, introduce the (small deviation) event

SD(η) :=
{
max(LR(a), LR(b)) < η(δs(k + 1))1/2N1/3

}
.

Claim 3.3.6. There exist δ0 > 0 sufficiently small and c0 = c0(δ0, η) > 0 such that the
following holds: if ((x,y),Γ) ∈ BigMeanFLk(s) ∩ Ek ∩ SD(η), then, if we replace Γx,y by
a path γ ∈ GAC (x,y, η), the excess area of the resulting path is at least c0(sk)3/2N . In
particular, the new path lies in ΛN

2 .

Proof of Claim 3.3.6. Notice that by definition (x,y) = (a,b) are located below the mean
facet. Moreover, these points are at distance at most δ(k + 1)tN2/3 from the endpoints of
the mean facet. Changing Γ between a and b by an element of GAC (a,b, η) gives a path
Γ̃ which gained an area at least η∥a− b∥3/2 −A(a,b,Γ) where A(a,b,Γ) is the area of
the quadrilateral delimited by the extremities of the mean facet of Γ and the pair (a,b), see
Figure 3.4. Given the hypothesis on Γ, we find that

A(a,b,Γ) ≤ η
√
δ(s(k + 1))3/2N.

Hence, for δ = δ0 > 0 sufficiently small, there exists c0 = c0(δ0, η) > 0 such that (recall
that k ≥ 3)

ExcessArea(Γ̃) ≥ ηs3/2(k − 2)3/2N − η
√
δ0(s(k + 1))3/2N ≥ c0(sk)3/2N.

We now fix δ = δ0 and let η > 0 to be fixed later. Using the same reasoning as in (3.2.4) we
get that for ∥a− b∥ ≥ N0,

P⊗ PN
2

λ [Γ̃ ∈ GAC (x,y, η) | ((x,y),Γ) ∈ BigMeanFLk(s) ∩ Ek ∩ SD(η)]

≥ Pa,b[GAC (a,b, η)] ≥ c1,

where c1, N0 > 0 are given by Lemma 3.3.4. Since ∥a−b∥ ≥ s(k− 2)N ≥ sN , the above
bound always hold as soon as s ≥ N0/N . Assume that s ≥ N0. By the claim above, one has{
Γ̃ ∈ GAC (x,y, η) ,Γ ∈ BigMeanFLk(s)∩Ek∩SD(η)

}
⊂
{
ExcessArea(Γ̃) ≥ c0(tk)3/2N

}
.

Putting all the pieces together, and using the fact that Γ̃ has law PN2

λ ,

P⊗PN
2

λ [BigMeanFLk(s)∩Ek ∩SD(η)] ≤ c−1
1 PN

2

λ [ExcessArea(Γ) ≥ c0(tk)3/2N ]. (3.7)

We now argue that SD(η) occurs with uniform non-zero probability under PN2

λ .
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Claim 3.3.7. There exist η > 0 and c2 = c2(η) > 0 such that

PN
2

λ [SD(η) | BigMeanFLk(s)] ≥ c2.

Proof of Claim 4.4.12. The claim is a consequence of the coupling obtained in Proposi-
tion 3.2.6. Indeed, a and b belong to the excursion of Γ under the mean facet. Thus,
conditioning on the extremities of the mean facet, which we call afac and bfac, the local
roughness of a (resp. b) is dominated by the height of a negative random walk excursion
between afac and bfac after da steps, where da is the number of steps from afac to a (resp db
steps, where db is the number of steps from b to bfac) which is of order

√
da (resp.

√
db).

Since by choice of a and b we can deterministically bound da and db by O(δskN2/3), we
get the claim choosing η large enough.

We are now able to conclude. Let η > 0 be given by the claim above. Notice that

P⊗ PN
2

λ [Goodhitk

∣∣∣ BigMeanFLk(s) ∩ SD(η)] ≥
(
δ
2

)2
.

Write

PN
2

λ [BigMeanFLk(s)] ≤
(
2
δ

)2 · c−1
2 · P⊗ PN

2

λ [BigMeanFLk(s) ∩ Ek ∩ SD(η)]

+
(
2
δ

)2 · P⊗ PN
2

λ [BigMeanFLk(s) ∩ GoodHitk ∩ (Bad+,−ε ) ∩ {Γ ⊂ BK1N \BK2N}]

+ PN
2

λ [BigMeanFLk(s) ∩ {Γ ⊂ BK1N \BK2N}c] .

To bound the first term we use (3.3.1) together with Proposition 3.2.4. To bound the second
term we use Proposition 3.2.5 and proceed as in the proof of Proposition 3.2.10. Finally, the
last term is bounded using Lemma 3.2.2. Putting all the pieces together, we get the existence
of c, C > 0 such that for 3 ≤ k ≤ kN (recall that s = t/3),

PN
2

λ [BigMeanFLk(s)] ≤ Ce−c(tk)
3/2
.

As a consequence, setting c̃ = 3N0, there exists some constants c′, C ′ > 0 such that, for all
c̃ ≤ t ≤ N ε,

PN
2

λ [MeanFL(Γ) ≥ tN
2
3 ] ≤

kN∑
k=3

PN
2

λ [BigMeanFLk(t/3)] + PN
2

λ

[
MeanFL(Γ) ≥ (t/3)kNN

2
3
]

≤ C ′e−c
′t3/2 .
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Proof of Proposition 3.3.2

From Proposition 3.3.1, it is easy to deduce the bound of Proposition 3.3.2 using the coupling
introduced in Subsection 3.2.3.

Proof of Proposition 3.3.2. Let t > 0 and δ > 0 be a (small) constant to be fixed later . We
split the event {MeanLR > tN1/3} according to the value of MeanFL,

PN
2

λ

[
MeanLR(Γ) > tN

1
3
]
= PN

2

λ

[
MeanLR(Γ) > tN

1
3 ,MeanFL(Γ) ≤ t2−δN

2
3
]

+ PN
2

λ

[
MeanLR(Γ) > tN

1
3 ,MeanFL(Γ) ≥ t2−δN

2
3
]
.

By Proposition 3.3.1, we know that, for c̃ ≤ t2−δ ≤ N2/3,

PN
2

λ [MeanLR(Γ) > tN
1
3 ,MeanFL(Γ) ≥ t2−δN

2
3 ] ≤ C exp(−ct

3
2
(2−δ)).

Now for j ≥ 0, let Aj be the following event:

Aj := {MeanLR(Γ) > tN
1
3 ,MeanFL(Γ) = j}.

We can now make use of Lemma 3.2.7 to argue that for every j ≤ t2−δN2/3,

PN
2

λ [Aj ] =
∑

∥a−b∥=j
arg(a)>π

4
≥arg(b)

PN
2

λ [MeanLR(Γ) ≥ tN
1
3 | Faca,b]PN

2

λ [Faca,b]

≤ C exp
(
− ct

2N2/3

j

)
PN

2

λ [MeanFL(Γ) = j]

≤ C exp(−ctδ)PN2

λ [MeanFL(Γ) = j] .

The first equality comes from the fact that there exists exactly one pair a, b such that
arg(a) > π

4 ≥ arg(b) and Fac(a, b) occurs. Moreover, if Fac(a, b) occurs with such a choice
of a and b, then [a, b] will automatically be the mean facet, so Lemma 3.2.7 holds for the
second line. Thus, we obtained,

PN
2

λ [MeanLR(Γ) > tN
1
3 ] ≤ C exp(−ct

3
2
(2−δ)) +

t2−δN2/3∑
j=0

C exp(−ctδ)PN2

λ [MeanFL(Γ) = j]

≤ C exp(−ct
3
2
(2−δ)) + C exp(−ctδ).

Equating the exponents yields an optimal value of δ = 6
5 and the result.
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3.3.2 Lower bounds

Recall the setting of Theorem 3.1.3. Our target estimates are the following.

Proposition 3.3.8. There exists a function F1 : R+ → [0, 1] satisfying limt→0+ F1(t) = 0,
such that for any t > 0 small enough,

lim sup
N→∞

PN
2

λ

[
MeanLR(Γ) < tN

1
3
]
≤ F1(t).

Proposition 3.3.9. There exists a function F2 : R+ → [0, 1] satisfying limt→0+ F2(t) = 0,
such that for any t > 0 small enough,

lim sup
N→∞

PN
2

λ

[
MeanFL(Γ) < tN

2
3
]
≤ F2(t).

Remark 3.3.10. As before, we obtain

lim inf
N→∞

EN
2

λ

[
MeanFL(Γ)

N2/3

]
> 0, lim inf

N→∞
EN

2

λ

[
MeanLR(Γ)

N1/3

]
> 0.

Let us briefly describe the strategy of the proof. We carefully analyze the marginal of
PN2

λ in the cone AN of apex 0 and angular opening N−1/3. Due to the Brownian Gibbs
property, conditionally on the outside of the cone, this marginal is the law of a random walk
bridge conditioned on capturing a random amount of area. We first prove in Lemma 3.3.12
that this random area is of order N , with Gaussian tails. Hence, the marginal of PN2

λ in
AN is absolutely continuous with respect to the law of a random walk bridge without the
area conditioning, in the large N limit. The strategy of proof is thus clear: we prove the
corresponding statements for the unconditioned random walk bridge (see Lemmas 3.3.16
and 3.3.17), and transmit then to PN2

λ thanks to the latter observation.

Let us introduce a few quantities that we will be useful in the remainder of this section.

Definition 3.3.11. For N ≥ 1, we define θN := N−1/3. We set AN to be the cone of apex
0 and angular opening of θN centered around the line {y = x}. If γ ∈ ΛN

2 , let us define
xN (γ) (resp. yN (γ)) to be point of γ that lies in AN and that is the closest to the line
constituting the left (resp. right) boundary of AN . Finally, we define

AN (γ) :=
∣∣Enclose(γxN (γ),yN (γ) ∩AxN (γ),yN (γ))

∣∣− ∣∣T0,xN (γ),yN (γ)

∣∣ .
We shall also make a slight abuse of notation in considering AN (γ̃) for some oriented path
γ̃ linking xN (γ) to yN (γ) (for some γ ∈ ΛN

2). In that case, the meaning of AN (γ̃) is
clear: it is the corresponding AN (γ′) for any γ′ ∈ ΛN

2 which extends γ̃ outside the cone
AxN (γ),yN (γ).

The following lemma will play a central role in the proofs of Propositions 3.3.8 and 3.3.9.
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x̃

ỹ

⌈α+1
K2

⌉

Figure 3.5: One possible output of the map Tx,y. The shift of (x, y) is denoted (x̃, ỹ). The
initial path is the black path (after a shift to the left). The two modifications involved in the
procedure described above are represented in red. The red path in the light green shaded
region has been sampled uniformly amongst the paths that capture a non-negative area
(computed with respect to the black dashed line). The area captured by the turquoise region
is sufficient to compensate the possible area loss due to the resampling of the path between x
and y.

Lemma 3.3.12. There exist two constants c, C > 0 such that for any β > 0, and for N large
enough,

PN
2

λ [AN (Γ) ≥ βN ] ≤ Ce−cβ2
.

Proof. The proof of this statement heavily relies on the probabilistic multi-valued map
principle stated in Lemma 3.5.3. For α > 0, we introduce

BadAreaNα :=
{
γ ∈ ΛN

2
, AN (γ) ∈ [αN, (α+ 1)N ]

}
.

Define for x, y ∈ N2,

Ax,y := BadAreaNα ∩
{
Γ ⊂ BK1N \BK2N

}
∩
{
xN (Γ) = x, yN (Γ) = y

}
∩
{
Γ /∈ Bad+,−ε,xN (Γ),yN (Γ)

}
,
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where Bad+,−ε,xN (Γ),yN (Γ) := Bad+ε,AxN (Γ),yN (Γ)
∪ Bad−ε,AxN (Γ),yN (Γ)

, and ε is given by Propo-
sition 3.2.5.

Fix x, y ∈ N2 such that PN2

λ [Ax,y] ̸= 0.

Let us define a multi-valued map Tx,y : Ax,y → P(ΛN
2
) via the following two-step procedure

(see Figure 3.5 for an illustration of the procedure). From some path γ ∈ BadAreaNα , we can
create a new oriented path of the first quadrant by erasing the portion of γ lying between
x and y (previously called γx,y) and replacing it by any oriented path γ̃x,y linking x to y
thus obtaining an intermediate path γ̃ which we require to satisfy AN (γ̃) ≥ 0, and finally by
adding ⌈α+1

K2
⌉ horizontal steps at the beginning of γ̃ (K2 is the constant defined in 3.2.2).

We define Tx,y(γ) to be the subset of Λ of the paths that can be obtained from γ by this
procedure. Notice that T is well defined since if γ ∈ Ax,y, the intermediate path γ̃ defined
above satisfiesA(γ̃) ≥ N2− (α+1)N , and it is easy to check that the first ⌈α+1

K2
⌉ horizontal

steps that have been added to γ̃ capture an area at least equal to (α+ 1)N (this comes from
the fact that γ ∈ {Γ ⊂ BK1N \BK2N}). Hence, for any γ ∈ Ax,y, Tx,y(γ) ⊂ ΛN

2 .

We are going to apply Lemma 3.5.3 to Tx,y. Before doing so, let us notice that we may
co-restrict the map defined above to the set

Bx,y := {xN (Γcut) = x,yN (Γ
cut) = y} ∩ {The first ⌈α+1

K2
⌉ steps are horizontal} ⊂ ΛN

2
,

where Γcut is the path Γ minus the first ⌈α+1
K2
⌉ steps, translated of ⌈α+1

K2
⌉ towards the left

direction, see Figure 3.5. Now, applying Lemma 3.5.3 yields

PN
2

λ [Ax,y] ≤ φ(Tx,y)ψ(Tx,y)PN
2

λ [Bx,y], (3.8)

where the quantities φ(Tx,y) and ψ(Tx,y) are defined in Lemma 3.5.3. It is very easy to
check that

φ(Tx,y) =

(
1

λ

)⌈α+1
K2

⌉
, ψ(Tx,y) =

|{γ ∈ Λx→y,AN (γ) ∈ [αN, (α+ 1)N ]}|
|{γ ∈ Λx→y,AN (γ) ≥ 0}|

.

Recall that Px,y is the uniform measure on Λx→y. We can write

ψ(Tx,y) = Px,y
[
AN (γ) ∈ [αN, (α+ 1)N ]

∣∣ AN (γ) ≥ 0
]
.

Let us call θ(x, y) the positive angle formed by the segment [x, y] and the horizontal line
passing through x. Since we assumed that PN2

λ [Ax,y] ̸= 0, we have θ(x, y) ∈ [ε, π/2− ε].
Let hN := ∥y − x∥. As it turns out, hN is of order N2/3.

Claim 3.3.13. There exist two constants c = c(ε), C = C(ε) > 0 such that

hN ∈ [cN2/3, CN2/3].
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ϑ− π/4

hN cos(ϑ− π/4)

y

x

π/4

Figure 3.6: An illustration of a sample X(ϑ) of PϑhN (in blue). This path corresponds
to a symmetric random walk that does ±2−1/2 jumps at times k2−1/2 for 1 ≤ k ≤√
2hN cos(ϑ− π/4).

Proof of Claim 3.3.13. The constraint Γ ⊂ BK1N \BK2N enforces that for N large enough
hN ≥ 1

2K2NθN = 1
2K2N

2/3. Then, since we restricted ourselves to the case ε ≤ θ(x, y) ≤
π/2− ε, there exists C1 > 0 such that

hN ≤
C1

sin ε
NθN =

C1

sin ε
N2/3.

By translation invariance, Px,y only depends on θ = θ(x, y) and hN . Since these parameters
are more relevant we write PθhN := Px,y. Moreover, with this observation and to the cost of
rotating the picture by π/4, we can always assume that samples of PθhN start at 0 and end at
eiπ/4(y − x), see Figure 3.6. We will denote by X(θ) a sample of PθhN .

Now,

PθhN
[
AN (X(θ)) ∈ [αN, (α+ 1)N ]

]
= PθhN

[
h
−3/2
N AN (X(θ)) ∈ [αNh

−3/2
N , (α+ 1)Nh

−3/2
N ]

]
≤ PθhN

[
h
−3/2
N AN (X(θ)) ∈ [C−3/2α, c−3/2(α+ 1)]

]
≤ sup

ϑ∈[ε,π
2
−ε]

PϑhN
[
h
−3/2
N AN (X(ϑ)) ∈ [C−3/2α, c−3/2(α+ 1)]

]
,

where the second inequality follows by Claim 3.3.13.
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Classical invariance theorems for random walks (started at 0) conditioned to reach αk after k
steps (see [93] or [28, Remark 2.6]) yield the following convergence in distribution6: calling
(X

(π/4)
thN

)0≤t≤1 the trajectory7 of a sample of Pπ/4hN
, one has that under Pπ/4hN

lim
N→∞

(
X

(π/4)
thN

σ
√

21/2hN

)
t∈[0,1]

= (BBt)t∈[0,1],

where (BBt)t∈[0,1] is the standard Brownian bridge on [0, 1], and σ = 2−1/2. This observation,
together with the strategy described in [28, Remark 2.6], yields a similar invariance principle
for the trajectory (X(ϑ)

thN cos(ϑ−π/4))0≤t≤1 of a sample of PϑhN . For ϑ ∈ (0, π/2) and t ∈ [0, 1],
denote

f
(ϑ)
N (t) :=

1

σ(ϑ)
√

21/2hN cos(ϑ− π/4)
(X

(ϑ)
thN cos(ϑ−π/4) − thN sin(ϑ− π/4)), (3.9)

where σ(ϑ) := 2−1/2
√

1− tan2(ϑ− π/4). Then, for ϑ ∈ (0, π/2), under PϑhN ,

lim
N→∞

(
f
(ϑ)
N (t)

)
t∈[0,1]

= (BBt)t∈[0,1], (3.10)

where the convergence holds in distribution. In particular, one has that

h
−3/2
N AN (X(ϑ)) = h

−3/2
N

∫ hN cos(ϑ−π/4)

0
(X

(ϑ)
t − tan(ϑ− π/4)t)dt

= 21/4σ(ϑ)[cos(ϑ− π/4)]3/2
∫ 1

0
f
(ϑ)
N (t)dt.

Hence, (3.3.2) implies the following convergence in distribution under PϑhN :

lim
N→∞

h
−3/2
N AN (X(ϑ)) = c0(ϑ)

∫ 1

0
BBtdt,

where c0(ϑ) := 21/4σ(ϑ)[cos(ϑ− π/4)]3/2.

Remark 3.3.14. It follows from [28, Remark 2.6] that the latter convergence is uniform (for
instance at the level of the convergence of cumulative distribution function) in ϑ ∈ [ε, π/2−ε].
Indeed, when the underlying random walk has increments with exponential moments, the
authors identify the law of the random walk bridge conditioned to stay above a line of slope ϑ
with a unconditioned random walk whose increments are given by a suitable exponential tilt

6The convergence holds in the space C([0, 1]) of continuous functions on [0, 1] equipped with the topology of
uniform convergence.

7The sample is a priori only defined for the discrete times k/
√
2 for 0 ≤ k ≤

√
2hN but we extend it to

[0, hN ] by linear interpolation.
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of the increments of the former walk. Hence the Radon-Nikodym derivative of the ϑ-tilted
walk with respect to the π/4-tilted walk is explicit and is a continuous function of ϑ. In
particular, it is uniformly bounded on a compact interval such as [ε, π/2− ε]. We shall use
this observation several times in what follows.

Call P the law of the Brownian bridge (BBt)t∈[0,1]. The above observations yield that for N
large enough,

PθhN
[
AN (Xθ) ∈ [αN, (α+ 1)N ]

]
≤ 2P

[ ∫ 1

0
BBtdt ≥ c0(ε)−1C−3/2α

]
. (3.11)

A similar reasoning yields the lower bound, for N large enough,

PθhN [AN (X
θ) ≥ 0] ≥ 1

2
P

[∫ 1

0
BBtdt ≥ 0

]
=: η. (3.12)

Gathering (3.3.2) and (3.3.2), we get

ψ(Tx,y) ≤ 2η−1P
[ ∫ 1

0
BBtdt ≥ c0(ε)−1C−3/2α

]
.

Using the following estimate on the tail area of a Brownian bridge (see [94, Theorem 1.2]),
we obtain c1 = c1(ε), C1 = C1(ε) > 0 such that

P
[ ∫ 1

0
BBtdt ≥ c0(ε)−1C−3/2α

]
≤ C1e

−c1α2
. (3.13)

Using (3.3.2), (3.3.2), and (3.3.2), we get that for N large enough,

PN
2

λ [Ax,y] ≤ 2C1η
−1e−c1α

2
λ
−⌈α+1

K2
⌉PN

2

λ [Bx,y]

≤ C2e
−c2α2

PN
2

λ [Bx,y].

To obtain the lemma, it remains to sum over α ≥ β and over all possible values for x and y,

PN
2

λ [AN (Γ) ≥ βN, Γ ⊂ BK1N \BK2N , Γ /∈ Bad+,−ε,xN (Γ),yN (Γ)] ≤ C2

+∞∑
α=⌊β⌋

exp(−c2α2).

Then, for some C3 > 0,

PN
2

λ [AN (Γ) ≥ βN, Γ ⊂ BK1N \BK2N , Γ /∈ Bad+,−ε,xN (Γ),yN (Γ)] ≤ C3e
−c2β2

.

Using Lemma 3.2.2 and Proposition 3.2.5, there exists C4 > 0 such that for N large enough
(namely N ≥ β3),

PN
2

λ [AN (Γ) ≥ βN ] ≤ C4e
−c2β2

.
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Definition 3.3.15. If γu,v ∈ Λu→v and z ∈ γu,v, we define LR(z)(γu,v), the local roughness
of the vertex z ∈ γu,v, to be the local roughness of z in the path γu,v extended to the left with
only horizontal steps to up to the y-axis and to the right with only vertical steps up to the
x-axis. We define the mean facet length of γu,v similarly.

The two next lemmas study the typical behaviours of the mean facet length and of the local
roughness of a uniform path between xN (Γ) and yN (Γ) when Γ is sampled according to
PN2

λ . For simplicity, in the rest of the section, when Γ is a sample of PN2

λ , we shall abbreviate
xN (Γ) (resp. yN (Γ)) by xN (resp. yN ). The proofs of these lemmas rely on Gaussian
computations and are not specific to the considered model. They are deferred to the end of
the section.

We will write GN := {Γ ∈ BK1N \BK2N} ∩ (Bad+,−ε,xN ,yN
)c.

Lemma 3.3.16. There exists a function Ψ independent of every parameter of the problem
with Ψ(t) −−−→

t→0+
0 such that, for t > 0, if N is large enough,

EN
2

λ

[
1GN

PxN ,yN [MeanLR(ΓxN ,yN ) < tN1/3]
]
≤ Ψ(t).

The corresponding statement for the mean facet length is the following

Lemma 3.3.17. There exists a function Φ independent of every parameter of the problem
with Φ(t) −−−→

t→0+
0 such that, for t > 0, if N is large enough,

EN
2

λ

[
1GN

PxN ,yN [MeanFL(ΓxN ,yN ) < tN2/3]
]
≤ Φ(t).

These two lemmas in hand, we can now prove the lower bound of Proposition 3.3.8.
Proposition 3.3.9 will be proved by the same method.

Proof of Proposition 3.3.8. Fix some t > 0, and some β > 0 that is going to be chosen later
as a function of t. We implement the following resampling procedure: let us start with a
sample Γ of PN2

λ . As usual we condition on the configuration outside of the cone AxN ,yN

that we name Γext := Γ \ ΓxN ,yN . By the Brownian Gibbs property, the distribution of
ΓxN ,yN is uniform among the oriented paths linking xN and yN that enclose at least a certain
amount of area which is measurable with respect to the exterior configuration. Let us callAext

the area already enclosed by Γext (namely, Aext = Enclose(Γ ∩Ac
xN ,yN

∩ N2)), so that the
conditional distribution of ΓxN ,yN is nothing but PxN ,yN

[
· | AN (ΓxN ,yN ) ≥ N2 −Aext

]
.

Before starting, let us point out a crucial fact. With our definition of LR(z)(Γu,v), it is a
deterministic fact that for any u, v ∈ Γ, z ∈ Γu,v,

LR(z) (Γu,v) ≤ LR(z) (Γ) and thus MeanLR(ΓxN ,yN ) ≤ MeanLR(Γ).
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Thus, we have

PN
2

λ

[
MeanLR(Γ) < tN1/3

]
≤ EN

2

λ

[
PxN ,yN

[
MeanLR(ΓxN ,yN ) < tN1/3 | AN (ΓxN ,yN ) ≥ N

2 −Aext

]]
.

Introduce

FN := {N2 −Aext ≤ βN} ∩ {Γ ⊂ BK1N \BK2N} ∩ (Bad+,−ε,xN ,yN
)c,

where Bad+,−ε,xN ,yN
was introduced in the proof of Lemma 3.3.12. Note that by Lemma 3.2.2,

Proposition 3.2.5 and Lemma 3.3.12, one has that for N ≥ β3,

PN
2

λ [FcN ] ≤ Ce−cβ
2
.

Hence,

EN
2

λ

[
PxN ,yN [MeanLR(ΓxN ,yN ) < tN1/3 | AN (ΓxN ,yN ) ≥ N

2 −Aext

]]
≤ EN

2

λ

[
PxN ,yN

[
MeanLR(ΓxN ,yN ) < tN1/3 | AN (ΓxN ,yN ) ≥ N

2 −Aext

]
1FN

]
+ Ce−cβ

2
.

Now, note that

1FN
PxN ,yN

[
MeanLR(ΓxN ,yN ) < tN1/3 | AN (ΓxN ,yN ) ≥ N

2 −Aext

]
≤ 1FN

PxN ,yN [MeanLR(ΓxN ,yN ) < tN1/3]

PxN ,yN [AN (ΓxN ,yN ) ≥ βN ]
.

Using the methods developed above8 we could also show that for some c′, C ′ > 0, if N is
large enough,

PxN ,yN [AN (ΓxN ,yN ) ≥ βN ] ≥ C ′e−c
′β2
.

By Lemma 3.3.16, we obtain that, integrating over Γext, and putting everything together,

PN
2

λ [MeanLR(Γ) < tN1/3] ≤ Ce−cβ2
+

Ψ(t)

C ′e−c′β2 .

It remains to carefully chose β in terms of t. We optimize the above equation by setting

β(t) =
√
(c+ c′)−1 log( cc′

CC′

Ψ(t)).

Observe that β(t) −−→
t→0

+∞. Choosing N large enough, we obtain that for some C ′′ > 0,

PN
2

λ [MeanLR(Γ) < tN1/3] ≤ C ′′(Ψ(t))
c

c+c′

which is the announced result.
8This is again an application of Donsker’s Theorem and the use of the asymptotic results of [94], we do not

write the full proof but rather refer to the proof of Lemmas 3.3.16 and 3.3.17 for details.
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Proposition 3.3.9 is a consequence of the exact same argument.

Proof of Proposition 3.3.9. We proceed exactly as in the proof of Proposition 3.3.8. Indeed,
observe that as previously,

MeanFL(ΓxN ,yN ) ≤ MeanFL(Γ).

Hence, the proof can be reproduced mutatis mutandi using this time Lemma 3.3.17.

We now turn to the proofs of the two Gaussian lemmas, namely Lemma 3.3.16 and
Lemma 3.3.17. The process of the concave majorant of a Brownian bridge has been
extensively studied in [72, 107, 12]. Let us briefly summarise their results.

• Groeneboom showed in [72] that conditionally on the convex majorant of a Brownian
motion, the difference process was a succession of independent Brownian excursions
between the extremal points of the concave majorant. The result was later extended to
the standard Brownian bridge in [12] via a Doob tranformation.

• Groeneboom also gave an explicit representation of the distribution of the process of
the slopes of the concave majorant. Later, Suidan [107] was able to derive the joint
law of the ordered lengths of the segments of [0, 1] in the partition of [0, 1] induced by
the extremal points of the concave majorant of a Brownian bridge.

We refer to the introduction of [12] for a clear and detailed presentation of these results. In
particular, we import the following statement from the three cited articles.

Theorem 3.3.18. Let (BBt)0≤t≤1 be the standard Brownian bridge and let (C(t))0≤t≤1 be its
smallest concave majorant. Let s ∈ (0, 1). Let us define the two following random variables:

• L(s) is the length of the almost surely unique facet of C intersecting the line {x = s},

• R(s) is the difference process defined by R(s) := C(s)−B(s).

Fix ε > 0. Then, one has

sup
s∈[ε,1−ε]

P [L(s) < r] −−−−→
r→0+

0,

and
sup

s∈[ε,1−ε]
P [R(s) < r] −−−−→

r→0+
0.

We briefly sketch the proof of Theorem 3.3.18 and refer to [72, 107, 12] for more details.

Sketch of proof of Theorem 3.3.18. Fix some s ∈ [ε, 1 − ε]. For L(s), we remark that
the results of [72] imply that C almost surely has a finite number of slope changes (or
extremal points) in [ε, 1 − ε], and [12] gives an explicit description of their lengths in
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terms of a size-biased uniform stick-breaking process. In particular, it implies that the
distribution of L(s) is absolutely continuous with respect to the Lebesgue measure on R+,
which implies that P [L(s) < r] −−−→

r→0
0. The statement follows by the observation that

s ∈ (0, 1) 7→ P [L(s) < r] is continuous.

For R(s), let us denote by a ≤ s ≤ b the horizontal coordinates of the endpoints of
the facet intersecting the line {x = s}. The exact same argument as above implies that
P [min(s− a, b− s) < ε] goes to 0 when ε goes to 0. On the complementary of the latter
event, by [72], R(s) is the height of a Brownian excursion at a positive distance of its
endpoints, and is indeed continuous with respect to the Lebesgue measure on R+. We
conclude as previously, observing that s ∈ (0, 1) 7→ P [R(s) < r] is continuous.

Now observe that in Lemmas 3.3.16 and 3.3.17, ∥yN−xN∥ is of orderN2/3 so that the scaling
is Gaussian. Hence, Donsker’s Theorem suggests that we may use the above-mentioned results
to obtain lower tails for the random variables N−1/3MeanLR and N−2/3MeanFL.

Proof of Lemma 3.3.16. As in the proof of Lemma 3.3.12, we write hN = ∥yN − xN∥.
Moreover, let us call t0N the intersection between the line segment [xN ,yN ] and the line
{y = x}. Remember that we work under the event {Γ ∈ BK1N \BK2N} ∩ (Bad+,−ε,xN ,yN

)c,
which allows us to reuse Claim 3.3.13, namely

cN2/3 ≤ hN ≤ CN2/3. (3.14)

Moreover, there exists a constant cε > 0 such that

min(∥t0N − xN∥2, ∥yN − t0N∥) ≥ cεhN . (3.15)

Recall the parametrisation of the probability measures PθhN = PxN ,yN introduced in the
proof of Lemma 3.3.12. Similarly as before,

EN
2

λ

[
1GN

PxN ,yN

[
MeanLR(ΓxN ,yN ) < tN1/3

]]
= EN

2

λ

[
1GN

PθhN
[
h
−1/2
N LR(t0N ) < th

−1/2
N N1/3

]]
≤ EN

2

λ

[
1GN

PθhN
[
h
−1/2
N LR(t0N ) < c−1/2t

]]
≤ EN

2

λ

[
1GN

sup
ϑ∈[ε,π/2−ε]

PϑhN [h
−1/2
N LR(t0N ) < c−1/2t

]]
,

where c is the constant appearing in (3.3.2). Now, observe that tN0 is independent of the
random path sampled according to PϑhN , and we can write

PϑhN
[
h
−1/2
N LR(t0N ) < c−1/2t

]
≤ sup

s∈[cε,1−cε]
PϑhN

[
h
−1/2
N LR(hNs) < c−1/2t

]
,
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Thus, we obtained that

EN
2

λ

[
1GN

PxN ,yN

[
MeanLR(ΓxN ,yN ) < tN1/3

]]
≤ EN

2

λ

[
1GN

sup
ϑ∈[ε,π/2−ε]

sup
s∈[cε,1−cε]

PϑhN
[
h
−1/2
N LR(shN ) < c−1/2t

]]
, (3.16)

where cε is the constant appearing in (3.3.2). Reasoning as above, one has the following
convergence in distribution (the random variableR was introduced in Theorem 3.3.18), under
PϑhN and assuming GN occurs, for s ∈ [cε, 1− cε],

lim
N→∞

h
−1/2
N LR(shN ) = γ(ϑ)R(s),

where γ(ϑ) = σ(ϑ)
√

21/2 cos(ϑ− π/4) and σ(ϑ) was defined below (3.3.2). Once again,
we claim that this convergence is uniform in ϑ ∈ [ε, π/2− ε] (see Remark 3.3.14). Hence,
the limsup of the right-hand side of (3.3.2) is bounded by

sup
s∈[cε,1−cε]

P[R(s) < tc−1/2γ(ε)−1].

We argue as in the proof of Lemma 3.3.12 to get for N large enough

EN
2

λ

[
1GN

PxN ,yN

[
MeanLR(ΓxN ,yN ) < tN1/3

]]
≤ C1 sup

s∈[cε,1−cε]
P
[
R(s) < tc−1/2γ(ε)−1

]
=: Ψ(t).

The fact that Ψ goes to 0 is a consequence of Theorem 3.3.18.

We turn to the proof of Lemma 3.3.17.

Proof of Lemma 3.3.17. The proof follows the exact same strategy as above. Indeed, keeping
the notations of the proof of Lemma 3.3.16, we may write

EN
2

λ

[
1GN

PxN ,yN

[
MeanFL(ΓxN ,yN ) < tN2/3

]]
≤ EN

2

λ

[
1GN

sup
ϑ∈[ε,π/2−ε]

PϑhN
[
h−1
N MeanFL(ΓxN ,yN ) < tc−1

]]
.

We are going to use the same method as in the proof of Lemma 3.3.16. We refer to [107,
Theorems 4 and 5] to observe that the facet length scales as the time hN in a random walk
bridge. Some extra care is needed due to the fact that the function ϕ ∈ C([0, 1],R) 7→
MeanFL(ϕ) ∈ R+ is not continuous in ϕ; however it is easy to check that its points of
discontinuity are included in the set of continuous functions having at least three aligned
local maxima. Using the fact that the set of such functions has measure 0 under P and
the above-mentioned uniformity in ϑ, we obtain from arguments similar to that of proof of
Lemma 3.3.16 that there exists a constant δ(ε) > 0 such that, for N large enough,
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EN
2

λ

[
1GN

PxN ,yN

[
MeanFL(ΓxN ,yN ) < tN2/3

]]
≤ C ′

1 sup
s∈[cε,1−cε]

P[L(s) < tδ(ε)c−1]

=: Φ (t) .

We conclude using Theorem 3.3.18.

3.4 Analysis of the maximal facet length and of the maxi-
mal local roughness

This section is devoted to the proof of Theorem 3.1.5. The corresponding statements in the
context of the random-cluster have been obtained by Hammond in [74, 75] (see Section 3.5
for a detailed discussion). We will essentially adapt the robust arguments developed by
Hammond in these papers although some new difficulties, coming from the oriented feature
of the model, will emerge.

The proof of the upper bound of (3.1.5) is in spirit the same as the one of Proposition 3.2.10
observing that (with care) the proof can be reproduced replacing the N ε by C(logN)1/3

with a large C.

The proof of the lower bound is more technical and follows the lines of [75]. We use a
different strategy of resampling consisting in successively resampling Γ in deterministic
angular sectors. We then show that each one of these resampling has a sufficiently large
probability of producing a favourable output (meaning with a large local roughness)— and
thus that the final output has a large local roughness with very high probability. However, we
will encounter several technical issues, the main one being the fact that a favourable ouptut
could be destroyed by further resamplings. This technical point will be solved by carefully
analysing the Markovian dynamic induced by the successive resamplings in Section 3.4.2.
The bound on the maximal facet length will be a simple byproduct of the bound on the
maximal local roughness.

3.4.1 Upper bounds

We start by proving the upper bound on MaxFL. The correct control is given by the following
proposition.

Proposition 3.4.1. There exist constants c̃, c, C > 0 such that, for any c̃ ≤ t ≤ N2/3(logN)−2/3,

PN
2

λ

[
MaxFL(Γ) ≥ tN

2
3 (logN)

1
3
]
≤ Ce−ct3/2 logN .

The proof of this proposition follows the same lines as the proof of Proposition 3.2.10
with the exception that we modify the event GAC (x, y, η) of Subsection 3.3.1 to require a
poly-logarithmic deviation of the area from its typical value.
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Definition 3.4.2 (Logarithmic good area capture). Let γ ∈ Λ be a path, η > 0 and x, y ∈ N2.
We say that γ realizes the event LogGAC(x, y, η) (meaning “logarithmic good area capture”)
if

(i) γ ∩Ax,y ∈ Λx→y, or in words, γ connects x and y by a oriented path,

(ii) |Enclose(γ ∩Ax,y)| − |T0,x,y| ≥ η ∥ x− y ∥
3
2 (log ∥ x− y ∥)

1
2 .

As previously, we need to estimate the probability of LogGAC(x, y, η) under Px,y, the uniform
measure on Λx→y. The following result, whose proof is postponed to the Appendix 3.5.3,
gives us a lower bound on Px,y[LogGAC(x, y, η)]. Recall that θ(x, y) ∈ [0, π/2] the angle
formed by the horizontal axis and the segment joining x and y.

Lemma 3.4.3. Let ε, η > 0. There exist C = C(ε) > 0 and N0 = N0(ε, η) > 0 such that
for any x, y ∈ N2 satisfying Λx→y ̸= ∅, ε ≤ θ(x, y) ≤ π/2− ε and ∥x− y∥ ≥ N0,

Px,y [LogGAC(x, y, η)] ≥ ∥x− y∥−Cη
2
.

Proposition 3.2.5 will ensure that the condition on θ(x, y) holds with high probability.

Proof of Proposition 3.4.1. We repeat the same strategy as in the proof of Proposition 3.2.10
considering this time the event

BigFacet(t) :=
{
MaxFL(Γ) ≥ tN

2
3 (logN)

1
3
}

instead of BigMeanFL(t), LogGAC instead of GAC, and replacing GoodHit by the event that
the random pair (x,y) hits the extremities of the largest facet. The control on the probability
of LogGAC is given by Lemma 3.4.3 above.

With this result, it is now easy to estimate the correct scale for MaxLR. The statement is
given in the following proposition.

Proposition 3.4.4. There exist constants c̃, c, C > 0 such that, for any c̃ ≤ t ≤ N5/6(logN)−5/6,
then,

PN
2

λ

[
MaxLR(Γ) ≥ tN

1
3 (logN)

2
3
]
≤ Ce−ct6/5 logN .

Proof. Denote by MaxFac the facet where MaxLR(Γ) is attained, and by MLRF(Γ) its length.
It is clear that

MLRF(Γ) ≤ MaxFL(Γ).

With this remark and Proposition 3.4.1, we can conclude using the exact same method as in
the proof of Proposition 3.3.2, the only difference being that we now use the coupling along
the facet which has the largest local roughness.

More precisely, let δ > 0 to be fixed later. Let t > 0, then
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{
MaxLR(Γ) ≥ tN

1
3 (logN)

2
3
}
⊂

{
MLRF(Γ) ≥ t2−δN

2
3 (logN)

1
3
}
∪A ∪

{
Γ ⊂ (BK1N )

c
}
∪
t2−δN

2
3 (logN)

1
3⋃

j=N
1
3

Aj , (3.17)

where
Aj =

{
MaxLR(Γ) ≥ tN

1
3 (logN)

2
3 , MLRF(Γ) = j, Γ ⊂ BK1N

}
,

A =
{
MaxLR(Γ) ≥ tN

1
3 (logN)

2
3 , MLRF(Γ) < N

1
3
}
,

and K1 is defined as in Lemma 3.2.2. It is easy to check that A = ∅ for t ≥ 1, which is
now our assumption. In the right-hand side of (3.4.1), we already know how to control the
probability of the first three terms. The proof will follow from obtaining an upper bound
on PN2

λ [Aj ]. This bound is (again) given by the Lemma 3.2.7 (see Remark 3.2.8). Let us
denote by {∥Fac(x)∥ = j} the event that the facet of the vertex x has length j. Then, for
N1/3 ≤ j ≤ t2−δN2/3(logN)1/3,

PN
2

λ [Aj ] ≤
∑

x∈BK1N

PN
2

λ [LR(x) ≥ tN
1
3 (logN)

2
3 , ∥Fac(x)∥ = j]

≤
∑

x∈BK1N

∑
a,b∈N2

∥b−a∥=j
arg(a)<arg(x)<arg(b)

PN
2

λ [LR(x) ≥ tN
1
3 (logN)

2
3

∣∣ Fac(a, b)]PN2

λ [Fac(a, b)]

≤ O(N2j4) exp(−ct
2N2/3(logN)4/3

2j
)

≤ e−ct
δ logN

when the third inequality is a consequence of Lemma 3.2.7 (and more particularly Re-
mark 3.2.8). Set δ = 6

5 and take t0 ≤ t ≤ N5/6(logN)−5/6, where t0 is large enough.
Applying Lemma 3.2.2 and Proposition 3.4.1 yields the desired bound.

3.4.2 Lower bounds

We start with the proof of the lower bound for MaxLR and then see how we can deduce the
lower bound for MaxFL.

The strategy

We rely again on the strategy of resampling. We will divide the upper-right quarter plane in
angular sectors of angle

θN = θN (χ) := χN− 1
3 (logN)

1
3 ,
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where χ > 0 is a small constant that we will specify later. Then, we will randomly process
a resampling in some of these sectors. We will argue that each one of these sectors has a
probability of producing a “favourable” output (i.e. with a large local roughness) which is
decaying slowly (see Lemma 3.4.19) in N , i.e. roughly like N−δ for some (small) δ > 0. By
iterating these resamplings on different (sufficiently many) sectors we ensure to recover a
new path which presents at least one sector with a large local roughness. There is a crucial
point we will have to deal with: if a given sector produces a favorable output, this could be
undone by a further resample. That is why we will resample on sufficiently distant sectors
(see Proposition 3.4.20).

Let us first fix some notations. Define

mN :=

⌊
π

2θN

⌋
to be the number of sectors subject to resampling. Note that

mN ∼
N→+∞

π

2χ
N

1
3 (logN)−

1
3 . (3.18)

Denote by Aj(N) the sector of the first quadrant defined by the angles (j − 1)θN and jθN
for j ∈ {1, . . . ,mN}. Note that the first quadrant may contain a narrower sector which we
will not make use of. Finally, we introduce the following notation: given two points a and b
in the first quadrant, we denote by ∠(a, b) the (non negative9) angle between the associated
vectors −→a and

−→
b 10. For a closed shape S, recall that Enclose(S) is the region of the first

quadrant enclosed by S (and if needed the coordinate axes).

Defining the resampling procedure

We want to resample in the sectors Aj(N). However, choosing the beginning and ending
points of the pieces subject to resampling in each sector must be done precociously. Recall
that for a, b ∈ N2, Λa→b is the set of oriented paths from a to b.

Definition 3.4.5. Let x, y ∈ N2 be such that Λx→y ̸= ∅. Denote by Ax,y the cone of apex 0

bounded by x and y. For all γ ∈ ΛN
2 , Ψx,y(γ) is the random element of Λ that is equal to γ

outside Ax,y, and that is random on Ax,y having the marginal law of PN2

λ on the considered
sector, given the area condition and the path outside the sector.

Remark 3.4.6. In words, the formation of Ψx,y(γ) can be summed up in two steps:

- Step A: we condition on the marginal of γ on Ax,y by the information of γ ∩Ac
x,y.

- Step B: we condition on the area: |Enclose((γ ∩Ac
x,y) ∪ γx,y)| ≥ N2.

9We will always choose ∠(a, b) ∈ [0, π/2].
10Sometimes we will also write ∠(−→a ,

−→
b ), depending on the context.
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The strategy is now the following: for each sector Aj(N), we pick some points xj , yj that
belong to this sector, and to the random path we are considering, and we apply Ψxj ,yj .

Definition 3.4.7 (Definition of RESj). Let j ∈ {1, . . . ,mN}. We define a procedure
RESj : Λ

N2 → Λ that only acts on Aj(N). Let Bj(N) be the cone of apex 0 defined by the
angles (j − 1)θN + θN/4 and jθN − θN/4. Notice that Bj(N) ⊂ Aj(N). Let γ ∈ ΛN

2 .
Let xj = xj(γ) (resp. yj = yj(γ)) be the left-most (resp. right-most) point of γ ∩Bj(N).
The procedure RESj consists in resampling γ between xj and yj . More precisely, we set
RESj(γ) := Ψxj ,yj (γ).

We will denote by (Ω,F ,P) the probability space in which RESj acts on an input Γ having
the distribution PN2

λ .

The following proposition is a straightforward consequence of the definition of Ψx,y,

Proposition 3.4.8 (PN2

λ is invariant under the resampling procedure). Let j ∈ {1, . . . ,mN}.
Then, if Γ ∼ PN2

λ , RESj(Γ) ∼ PN2

λ . In words, the law PN2

λ is invariant under the map RESj .

We have now properly defined a resampling procedure on each sector Aj(N). As we saw, this
procedure can be realized in two steps. Our next objective is to find a sufficient condition for
step B to be realized: how can we ensure that the resampled path captures enough area.

A sufficient condition to capture enough area

Let a and b be two points in N2 (with arg(a) > arg(b)). Assume we are given γ ∈ ΛN
2 that

passes through a and b. Modify γ between these two points replacing the original piece
of path γa,b by a new element γ̃a,b ∈ Λa→b. We are looking for a condition on γ̃a,b that is
sufficient for the modified path γ̃ to belong to ΛN

2 . It is clear that a sufficient condition for γ̃
to enclose a sufficiently large area is

|Enclose (γ̃a,b ∪ [0, a] ∪ [0, b])| ≥ |Enclose(γ) ∩Aa,b| . (3.19)

As in [75], we obtain a quantitative sufficient condition (see Corollary 3.4.13) for (3.4.2) to
be satisfied. We directly import without a proof the result from there as they trivially extend
to our setting.

We will need a notation: for x, y ∈ N2 distinct, we denote by ℓx,y the unique line that passes
through x and y. The following result is illustrated in Figure 3.7.

Lemma 3.4.9. Let γ ∈ ΛN
2 . Let j ∈ {1, . . . ,mN}. Denote by zj the point of C(γ) of

argument jθN . Let ℓj be the tangent line of C(γ) at zj . Let xj , yj ∈ γ ∩ Azj−1,zj and
Exj ,yj := Ej be the pentagon delimited by the lines ℓj−1, ℓj , ℓxj ,yj , ℓ0,xj and ℓ0,yj . Then,

(Enclose(γ) ∩Axj ,yj ) ⊂ T0,xj ,yj ∪Ej ,

where T0,xj ,yj is the triangle of apexes 0, xj , yj .
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ℓj

ℓj−1

xj

yj

ℓ0,yj

ℓ0,xj

zj

zj−1

Figure 3.7: Illustration of Lemma 3.4.9. The light orange shaded region corresponds to E0
j ,

and the dark orange shaded region corresponds to E1
j .

An immediate consequence of the lemma is the fact that (3.4.2) is satisfied if

|Enclose (γ̃a,b ∪ [0, a] ∪ [0, b])| ≥ |T0,a,b|+ |Ea,b| .

We now write Ej = E0
j ∪E1

j (where E0
j denotes the part of Ej that lies below ℓzj−1,zj ), see

Figure 3.7. It seems natural to seek an upper bound for |Ej |. We start by determining an
upper bound on |E1

j |. This is what we perform in the next lemma.

Lemma 3.4.10 ([75, Lemma 3.9]). Let γ ∈ ΛN
2 . Assume γ ⊂ BK1N . We keep the notations

of the preceding lemma. Let −→wj be the unit vector tangent to C(γ) at zj oriented in the
counterclockwise sense. We define the set of sectors with moderate boundary turning to be

MBT = {j ∈ {1, . . . ,mN}, ∥zj − zj−1∥ ≤
10πK1N

mN
and ∠(−→wj ,−−→wj−1) ≤

10π

mN
}.

Then,
|MBT| ≥ 9mN

10
,

and if j ∈ MBT,
|E1

j | ≤
1

2
(20)3K2

1χ
3N logN.

We now need to find an upper bound on |E0
j |. It is clear that such bound can only be

obtained under the assumption that the points xj and yj defined above are not to far from
C(γ). This remark motivates the following definition. Recall that if γ ∈ Λ and v ∈ γ,
LR(v, γ) = d(v, C(γ)) denotes the local roughness of v in γ.

Definition 3.4.11 (Favourable sectors). Let γ ∈ ΛN
2 . Let φ be a function that maps (0,∞)

to itself and that satisfies, as t→ 0,

φ(t) = o(
√
t).
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For χ > 0, we say that the sector Aj(N) is favourable under γ if there exists v ∈ γ ∩Aj(N)
such that

LR(v, γ) ≥ φ(χ)N
1
3 (logN)

2
3 .

We define UNFAV(γ, χ) = UNFAV to be the set of j ∈ {1, . . . ,mN} such that Aj(N) is
not favourable under γ.

Lemma 3.4.12 ([75, Lemma 3.10]). Let γ ∈ ΛN
2 . Assume that γ ∩ BK2N = ∅. Let

j ∈ MBT ∩ UNFAV. Then,

|E0
j | ≤ 20K1χφ(χ)N logN.

From the preceding results, we can deduce the sufficient condition to capture enough area we
were looking for,

Corollary 3.4.13 (Sufficient condition to capture a large area). Let γ ∈ ΛN
2 be such

that γ ⊂ BK1N \ BK2N . Let j ∈ {1, . . . ,mN}. Assume j ∈ MBT ∩ UNFAV. Let
xj , yj ∈ γ ∩Aj(N) be chosen accordingly to the procedure described in Definition 3.4.7.
Then if we resample γ between xj and yj , replacing the path γxj ,yj by a new path γ̃xj ,yj , the
new path γ̃ will be an element of ΛN2 if the following condition is satisfied,∣∣Enclose(γ̃xj ,yj ∪ [0, xj ] ∪ [0, yj ])

∣∣− ∣∣T0,xj ,yj

∣∣ ≥ (12(20)3K2
1χ

3 + 20K1φ(χ)χ
)
N logN.

The right shape

Now that we have a sufficient condition for a resampled path to be accepted, we need to
exhibit an event that will ensure this sufficient condition. We make good use of the event
LogGAC(x, y, η) introduced in Definition 3.4.2. As we are about to see, the realization of
this event will ensure that the conditon of Corollary 3.4.13 will be satisfied. Nevertheless,
we also need our resamplings to have a large local roughness and that is what motivates
Definition 3.4.14.

Definition 3.4.14 (Significant inward deviation). Let η > 0 and x, y ∈ N2 with arg(x) >
arg(y). Let γ ∈ Λ be a path which passes by x and y. We say that γ realizes the event
LogSID(x, y, η) (meaning “logarithmic significant inward deviation”) if there exists z ∈ γx,y
such that

d (z, ∂conv([0, x] ∪ [0, y] ∪ γx,y)) ≥ η ∥ x− y ∥
1
2 (log ∥ x− y ∥)

1
2 ,

where ∂conv is the border of the convex hull.

We are going to resample in the sectors Aj(N) introduced above. For a path γ ∈ ΛN
2 , call

xj = xj(γ), yj = yj(γ) the extremeties of the portion of γ subject to resampling in Aj(N)
(as described in Definition 3.4.7). We first check that provided χ > 0 is small enough, for a
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path γ satisfying “nice” properties, if we replace the portion of γ between xj and yj by a
path satisfying LogGAC(xj , yj , η) and LogSID(xj , yj , η), we obtain an element of ΛN2 with
a large local roughness. This motivates the next definition.

Definition 3.4.15 (Successful action of RESj). Let η > 0 and 1 ≤ j ≤ mN . Let γ ∈ ΛN
2 .

We say that our resampling operation in the j-th sectorRESj acts η-successfully on γ if the new
path γ′ obtained after the operation realizes the event LogGAC(xj , yj , η)∩LogSID(xj , yj , η).

We start by proving that the occurence of LogGAC(xj , yj , η) forces the area condition to be
satisfied.

Lemma 3.4.16. Let η > 0. There exists χ1 = χ1(η) > 0 such that for χ ∈ (0, χ1) the
following assertion holds. Let γ ∈ ΛN

2 such that γ ⊂ BK1N \BK2N . Let j ∈ {1, . . . ,mN}.
Assume that j ∈ MBT ∩ UNFAV. Assume that we modify γ between xj and yj and that the
modified path γ′ satisfies γ′ ∈ LogGAC(xj , yj , η). Then, γ′ ∈ ΛN

2 .

Proof. It is easy to see from Definition 3.4.7 that

∠(xj , yj) ≥
θN
4
.

Using this and the fact that xj , yj /∈ BK2N , we get

∥xj − yj∥ ≥
K2χ

2π
N

2
3 (logN)

1
3 .

The occurence of LogGAC(xj , yj , η) implies that

∣∣∣Enclose(γ′xj ,yj ∪ [0, xj ] ∪ [0, yj ])
∣∣∣− |T0,xj ,yj | ≥

η

2

(
2

3

) 1
2

(K2/2π)
3
2χ

3
2N logN.

Since φ(t) = o(
√
t) as t→ 0, we see that condition in Corollary 3.4.13 is ensured by fixing

χ > 0 small enough.

A direct consequence of the proof is the following identity: if γ ∈ ΛN
2 and j ∈ {1, . . . ,mN}

satisfy the properties above, and χ > 0 is small enough,

P [RESj acts η-successfully on γ] =
|{γ′xj ,yj ∈ Λxj→yj , (γ \ γxj ,yj ) ∪ γ′xj ,yj ∈ LogGAC(xj , yj , η) ∩ LogSID(xj , yj , η)}|

|{γ′xj ,yj ∈ Λx→y, (γ \ γxj ,yj ) ∪ γ′xj ,yj ∈ ΛN2}|
.

Lemma 3.4.17. Let η > 0. There exists χ2 = χ2(η) > 0 such that for χ ∈ (0, χ2) the
following assertion holds. Let γ ∈ ΛN

2 such that γ ⊂ BK1N \BK2N . Let j ∈ {1, . . . ,mN}.
Assume that j ∈ MBT ∩ UNFAV and that RESj acts η-successfully on γ. Then, Aj(N) is
favourable under γ′ = RESj(γ).
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Proof. Since γ′ ∈ LogSID(xj , yj , η), there exists z ∈ γ′xj ,yj such that

d
(
z, ∂conv

(
[0, xj ] ∪ [0, yj ] ∪ γ′xj ,yj

))
≥ η∥xj − yj∥

1
2 (log ∥xj − yj∥)

1
2 .

One may write γ′ =
(
γ ∩Ac

xj ,yj

)
∪ γ′xj ,yj , so that we have

d
(
z, C

(
γ′
))

= d
(
z, C

((
γ ∩Ac

xj ,yj

)
∪ γ′xj ,yj

))
≥ d

(
z, ∂conv

(
[0, xj ] ∪ [0, yj ] ∪ γ′xj ,yj

))
≥ η∥xj − yj∥

1
2 (log ∥xj − yj∥)

1
2

≥ 1

2

√
K2

(
2

3

) 1
2

ηχ
1
2N

1
3 (logN)

2
3 .

Since φ(t) = o(
√
t) as t→ 0, we get the result choosing χ > 0 small enough (in terms of

η).

We now fix η > 0 and χ = χ(η) > 0 sufficiently small so that Lemmas 3.4.16 and 3.4.17
are true. Combining Lemma 3.4.17 and Equation (3.4.2) we get, if γ ∈ ΛN

2 satisfies the
conditions above and if j ∈ MBT ∩ UNFAV,

P[Aj(N) is favourable under RESj(γ)] ≥ Pxj ,yj [LogGAC(xj , yj , η) ∩ LogSID(xj , yj , η)],

where we recall that Pxj ,yj is the uniform law on Λxj→yj . The last step is then to estimate the
probability on the right-hand side of the above inequality. This step is actually done using
the following result, whose proof is postponed to the appendix.

Lemma 3.4.18. Let η, ε > 0. There exist C = C(ε), N0 = N0(ε, η) > 0 such that for
any N ≥ N0, any x, y ∈ N2 such that arg(x) > arg(y), θ(x, y) ∈ [ε, π/2 − ε] and
∥y − x∥ ≥ N0,

Px,y [LogGAC(x, y, η) ∩ LogSID(x, y, η)] ≥ N−Cη2 .

We can now state the main result of this section.

Lemma 3.4.19 (Successful resampling). Let η > 0. Let χ = χ(η) > 0 be sufficiently small
so that Lemmas 3.4.16 and 3.4.17 hold true. Let γ ∈ ΛN

2 such that γ ⊂ BK1N \ BK2N .
Let j ∈ {1, . . . ,mN}. Assume that j ∈ MBT ∩ UNFAV and that γ /∈ Bad−ε,A ∪ Bad+ε,A for
A = Bj(N) where ε > 0 is given by Proposition 3.2.5. Then, there exist C = C(ε) > 0,
and N0 = N0(ε, η) ∈ N such that for N ≥ N0,

P[Aj(N) is favourable under RESj(γ)] ≥ P [RESj acts η-successfully on γ] ≥ N−Cη2 .
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How not to undo a large local roughness

As described earlier, we want to perform our random surgery successively on different sectors
Aj(N) in order to maximize the probability to obtain a favourable output. However, if we do
it without caution, might it be that we will lose in the process favourable sectors. In order to
avoid such problem we must only resample sufficiently distant sectors. This problem was
handled by Hammond in [75]. Once again, the proof immediately extends to our setup.

Proposition 3.4.20 ([75, Lemmas 3.14 and 3.16]). Let s1(N) ∈ {1, . . . ,mN}. Let s2(N) ∈
(0,∞) such that

s2(N) <
χ

2
s1(N).

Set s3(N) = s1(N) + 1. Let (k, j) ∈ {1, . . . ,mN}2 be such that |k − j| ≥ s3(N). Let
γ ∈ ΛN

2 be such that γ ∩BK2N = ∅. Define γ′ = RESj(γ). Assume that

max
{
MaxFL(γ),MaxFL(γ′)

}
≤ s2(N)N

2
3 (logN)

1
3 .

Then, the sector Ak(N) is favourable under γ if and only if it is favourable under γ′.
Moreover,

C(γ) ∩Ak(N) = C(γ′) ∩Ak(N).

The proof of the lower bound for MaxLR

A naive approach to the proof of the lower bound would be to apply the resampling
successively on all the sectors Aj(N). As we saw in the preceding section, this raises a major
problem. Applying the random surgery consecutively on two successive sectors might have
for consequence the disappearance of a favourable sector, which is something we clearly seek
to avoid. This problem can be solved working on distant sectors as seen in the last section.
This is why we decide to resample roughly one in s3(N) sectors. We decide to randomly
choose the sectors we resample: the reason is obvious, we do not want to resample a sector
where there is already a favourable sector. We now explain in detail our strategy.

We keep the notations of the above sections. We want to define a complete resampling
RES that will involve all the procedures RESj we constructed before and the quantities
{si(N)}i=1,2,3 introduced in Proposition 3.4.20, with their form being specified later.

Let (Ω,F ,P) be a probability space in which are defined: a random path Γ of law PN2

λ , and
the operations of resampling RESj for 1 ≤ j ≤ mN , which act independently. We also
generate a sequence of i.i.d random variables {Xk}1≤k≤mN

that have the law of a Bernoulli
of parameter 1

s3(N) . We now properly define our entire resampling procedure RES. This
operation will be defined under (Ω,F ,P). We build it by induction. Set Γ0 = Γ (the input).
For 1 ≤ j ≤ mN , if Xj = 1 then set Γj = RESj(Γj−1), else set Γj = Γj−1 (no action is
taken and the sector Aj(N) remains unchanged). We also set UNFAVj = UNFAV(Γj , χ)

and MBTj = MBT(Γj). As we previously saw, the law PN2

λ is invariant under RES. We
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will analyse PN2

λ by identifying it with the law of the output ΓmN of RES under the measure
P. However, the only way to analyse the output of the procedure is if it the input lies in a
space G of “good” paths. Introduce for 0 ≤ i ≤ mN ,

G1,i := {MaxFL(Γi) ≤ s2(N)N
2
3 (logN)

1
3 },

G2,i := {Γi ⊂ BK1N \BK2N},

G3,i := {Γi /∈ Bad−ε,Bi(N) ∪ Bad+ε,Bi(N)},

where ε > 0 is given by Proposition 3.2.5. We also define for 0 ≤ i ≤ mN ,

Gi :=
⋂

1≤j≤3

Gj,i, and G(i) :=
⋂

0≤j≤i
Gj .

Finally, the space of good outcomes that is interesting is nothing but

G := G(mN ).

For ε1 ∈ (0, 23) to be fixed later, we define

s3(N) := N ε1 , and s2(N) :=
χ

4
N ε1 ,

so that the conditions of Proposition 3.4.20 are satisfied. Let us first prove that the set of
good outcomes G happens with sufficiently large probability.

Lemma 3.4.21. There exist two constants c, C > 0 such that

P [Gc] ≤ C exp(−cχ
3
2N

3ε1
2 logN) + C exp(−cN) + C exp(−cNθN ).

Proof. By definition, we have that

P[Gc] ≤ mNPN
2

λ

[
MaxFL(Γ) > s2(N)N

2
3 (logN)

1
3

]
+mNPN

2

λ [Γ ⊂ (BK1N \BK2N )
c] +mNPN

2

λ [Bad−ε,B1(N) ∪ Bad+ε,B1(N)].

We then conclude by applying Proposition 3.4.1, Lemma 3.2.2 and Proposition 3.2.5.

Our second objective is to control the evolution of the sets MBT and UNFAV during the
procedure (under the assumption ofG). This control is obtained in the following lemma.

Lemma 3.4.22 ([75, Lemma 3.17]). For 1 ≤ j ≤ mN − s3(N), if G occurs then

UNFAVj ∩ {j + s3(N), . . . ,mN} = UNFAV0 ∩ {j + s3(N), . . . ,mN},

and
MBTj ∩ {j + s3(N), . . . ,mN} = MBT0 ∩ {j + s3(N), . . . ,mN}.

106



3.4. ANALYSIS OF THE MAXIMAL FACET LENGTH AND OF THE MAXIMAL LOCAL
ROUGHNESS

Proof. Let (j, k) ∈ {1, . . . ,mN}2 satisfy j + s3(N) ≤ k ≤ mN . If G occurs, then we may
apply Proposition 3.4.20 to each of the first j stages of the procedure RES. In particular, this
tells us that Ak(N) is favourable under Γj if and only if it is favourable under Γ0: this is
exactly (3.4.22).

Then, the condition k ∈ MBTj is determined by the data C(Γj) ∩Ak(N). However, one
may also successively apply Proposition 3.4.20 to the first j stages of the procedure RES to
obtain that

C(Γj) ∩Ak(N) = C(Γ0) ∩Ak(N),

which yields (3.4.22).

Now, recall from Lemma 3.4.10 that if Γ0 ⊂ BK1N then

|MBT0| ≥
9mN

10
≥ mN

2
.

By the occurence of G2,0, we may then define a set MBT0 ⊂ MBT0 that satisfies the following
properties:

- |MBT0| ≥ mN
4s3(N) ,

- each pair of consecutive elements of MBT0 differ by at least 2s3(N) + 1.

We also write MBT0 ∩ UNFAV0 = {p1, . . . , pr1} and MBT0 ∩ UNFAVc
0 = {q1, . . . , qr2}

with r1 + r2 = |MBT0|. For 1 ≤ r ≤ r1, let Pr denote the event that in the action of RES,
at stage pr, RESpr is chosen to act and acts successfully while no action is taken at stages j
for j ∈ {pr − s3(N), . . . , pr − 1} ∪ {pr + 1, . . . , pr + s3(N)}. Similarly, for 1 ≤ r ≤ r2,
let Qr denote the event that in the action of RES, at stage qr no action is taken, and same
for the stages j with j ∈ {qr − s3(N), . . . , qr} ∪ {qr + 1, . . . , qr + s3(N)}. We make good
use of these events to make favourable sectors appear.

Lemma 3.4.23. We keep the notations introduced above. Then,

(i) for each r ∈ {1, . . . , r1}, G ∩ Pr implies that the sector Apr(N) is favourable under
the output ΓmN ,

(ii) for each r ∈ {1, . . . , r2}, G ∩Qr implies that the sector Aqr(N) is favourable under
the output ΓmN .

Proof. (i) By Lemma 3.4.22, we have pr ∈ UNFAVpr−s3(N) ∩ MBTpr−s3(N), since
pr ∈ UNFAV0 ∩ MBT0. Given Pr, we then have pr ∈ UNFAVpr−1 ∩ MBTpr−1

because Γpr−s3(N) = Γpr−1. Applying Lemma 3.4.17 to the η-successful action of
RESpr on Γpr−1, we find that Apr(N) is favourable under Γpr . This remains the case
for Γpr+s3(N) because Γpr = Γpr+s3(N). Now, thanks to Proposition 3.4.20, Apr(N)
stays a favourable sector during the remaining stages of the procedure RES (recall that
we also work under G in which G1,i occurs for 1 ≤ i ≤ mN ).
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(ii) This is essentially the same argument as the one depicted above. We have that qr /∈
UNFAVqr−s3(N) so that the inaction of RESj for j ∈ {qr − s3(N), . . . , qr + s3(N)}
entails qr /∈ UNFAVqr+s3(N). We can then conclude as above using Proposition 3.4.20.

An immediate consequence of Lemma 3.4.23 is that(
r1⋃
i=1

Pi ∪
r2⋃
i=1

Qi

)
∩ G ⊂

{
MaxLR (ΓmN ) ≥ φ(χ)N

1
3 (logN)

2
3

}
.

Also, note that by the discussion above, if G happens then r1 + r2 ≥ mN
4s3(N) . Then,(

r1⋃
i=1

Pi ∪
r2⋃
i=1

Qi

)c
∩ G ⊂

mN
8s3(N)⋂
i=1

({r1 ≥ i} ∩ P ci ∩ G(pi−s3(N)) ∪

mN
8s3(N)⋂
i=1

({r2 ≥ i} ∩Qci ∩ G(qi−s3(N)).

Using all the material above, we claim that, for any K ∈ N, given {r1 ≥ K} ∩ G(pK−s3(N))

and the values of 1P1 , . . . ,1PK−1, the conditional probability thatPK occurs is at least

N−Cη2 1

s3(N)

(
1− 1

s3(N)

)2s3(N)

,

where η > 0 and C = C(ε) is given by Lemma 3.4.19. Indeed, the event on which we
condition is measurable with respect to σ(Γ0, . . . ,ΓpK−s3(N)), and, if it occurs, ΓpK−s3(N)

satisfies the hypothesis of Lemma 3.4.19. The claim then follows by this lemma. As a
result,

P


mN

8s3(N)⋂
i=1

(
{r1 ≥ i} ∩ P ci ∩ G(pi−s3(N)

) ≤ (1−N−Cη2 1

s3(N)

(
1− 1

s3(N)

)2s3(N)
) mN

8s3(N)

.

(3.20)
Similarly,

P


mN

8s3(N)⋂
i=1

(
{r2 ≥ i} ∩Qci ∩ G(qi−s3(N)

) ≤ (1− (1− 1

s3(N)

)2s3(N)+1
) mN

8s3(N)

.

(3.21)
Now, Proposition 3.4.8 implies that

PN
2

λ

[
MaxLR(Γ) ≥ φ(χ)N

1
3 (logN)

2
3
]
= P

[
MaxLR (ΓmN ) ≥ φ(χ)N

1
3 (logN)

2
3
]
.
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Using (3.4.2) we then obtain,

PN
2

λ [MaxLR(Γ) ≥ φ(χ)N
1
3 (logN)

2
3 ] ≥ 1− P[Gc]− P

[( r1⋃
i=1

Pi ∪
r2⋃
i=1

Qi

)c
∩ G
]
.

Using Lemma 3.4.21, Equations (3.4.2), (3.4.2), (3.4.2) and Definition 3.4.2, we obtain
the vanishing of PN2

λ

[
MaxLR(Γ) < φ(χ)N

1
3 (logN)

2
3

]
to 0 as N goes to infinity. More

precisely, we have a quantitative result. Recall that one may take η > 0 sufficiently small so
that it always satisfies Cη2 < ε1. For some constant c(χ) > 0,

P[Gc] ≤ exp(−c(χ)N
3ε1
2 logN),

(
1−N−Cη2 1

s3(N)

(
1− 1

s3(N)

)2s3(N)
) mN

8s3(N)

≤ exp(−c(χ)N
1
3
−3ε1(logN)

1
3 ),

and (
1−

(
1− 1

s3(N)

)2s3(N)+1
) mN

8s3(N)

≤ exp(−c(χ)N
1
3
−ε1(logN)

1
3 ).

Taking ε1 = 2
27 , we obtain the following result,

Proposition 3.4.24. For any χ > 0 sufficiently small, there exist c(χ), N0 > 0 such that for
N ≥ N0,

PN
2

λ

[
MaxLR(Γ) < φ(χ)N

1
3 (logN)

2
3
]
≤ exp(−c(χ)N

1
9 logN).

Remark 3.4.25. Recall that above we first consider values of ε1 sufficiently small (typically
ε1 < 1/9), and then fix a value of η > 0 such that Cη2 ≪ ε1 (where C is the constant given
by Lemma 3.4.19. Finally, we choose χ = χ(η) sufficiently small such that Lemmas 3.4.16
and 3.4.17 hold. We did not try to obtain an optimal bound in Proposition 3.4.24.

The proof of the lower bound for MaxFL

Once we have proved (3.1.5), obtaining a lower bound on MaxFL is immediate with the
use of the coupling described in Section 3.2. Indeed, assume that a path Γ satisfies
the event {MaxLR(Γ) ≥ tN1/3 logN2/3}, but with a maximum facet length of order
o(N2/3 logN1/3), this would imply the existence of a facet of length o(N2/3 logN1/3) and
whose local roughness is greater than tN1/3 logN2/3. If the piece of path along this facet
had true Gaussian fluctuations it would be impossible, but as we said earlier, thanks to
Proposition 3.2.6, it is possible to compare the fluctuations of the path along a given facet to
the ones of a random walk.
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Proposition 3.4.26. Let χ > 0 be sufficiently small. There exist a function ϕ such that
ϕ(t) −−−→

t→0+
+∞ such that for N large enough,

PN
2

λ [MaxFL(Γ) < φ(χ)3N
2
3 (logN)

1
3 ] ≤ N−ϕ(χ).

Proof. We split the event {MaxFL(Γ) < φ(χ)3N
2
3 (logN)

1
3 } into the union of two events,

according to the value of the maximal local roughness,

PN
2

λ [MaxFL(Γ) < φ(χ)3N
2
3 (logN)

1
3 ] ≤ PN

2

λ [MaxLR < φ(χ)(logN)
2
3N

1
3 ]

+ PN
2

λ [MaxFL(Γ) < φ(χ)3N
2
3 (logN)

1
3 , MaxLR ≥ φ(χ)(logN)

2
3N

1
3 ].

The first term of this sum has been shown to be smaller than exp(−c(χ)N1/9 logN) for χ
sufficiently small and N sufficiently large. To bound the second term, we use the coupling
described in Proposition 3.2.6. Indeed, we invoke the proof of Proposition 3.4.4 to get that
for some c > 0,

PN
2

λ [MaxFL(Γ) < φ(χ)3N
2
3 (logN)

1
3 , MaxLR ≥ φ(χ)(logN)

2
3N

1
3 ] ≤

O(N6) exp(− c
φ(χ) logN) + exp(−cN),

where the second term comes from the bound on PN2

λ [Γ∩(BK1N )
c ̸= ∅]. This gives the result

provided χ > 0 is sufficiently small in which case one can set ϕ(χ) := −(6− cφ(χ)−1) >
0.

3.5 Discussion: extending the results to the Wulff set-
ting

In that section, we briefly explain the fact that this model — even though it might look
very simple — is an appropriate model for modelling the phase separation interface in the
Wulff setting. In particular, we argue that it shares all the crucial properties of the latter
object. We chose to illustrate this fact through the example of the outermost circuit in a
constrained subcritical random-cluster model, a setting that was introduced by Hammond
in [73, 74, 75].

3.5.1 Definition of the random-cluster model

We quickly recall the definition of the random-cluster model, also known as FK percolation
and give a few of its basic properties (we refer to [49] for a complete exposition). The
random-cluster model on Z2 is a model of random subgraphs of Z2. Its law is described by
two parameters, p ∈ [0, 1] and q > 0. Let G = (V (G), E(G)) be a finite subgraph of Z2.
We denote its boundary by

∂G =
{
x ∈ V (G), ∃y /∈ V (G), {x, y} ∈ E(Z2)

}
.
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A percolation configuration on G is an element ω ∈ {0, 1}E(G). Hence, each edge of G
is assigned a value 0 or 1. We say that an edge e ∈ G is open if ω(e) = 1 and is closed
otherwise. Two vertices x, y ∈ Z2 are said to be connected if there exists a path of nearest
neighbour vertices x = x0, x1, . . . , xn = y such that the edges {xi, xi+1} are open for every
0 ≤ i ≤ n− 1. In this case we say that the event {x↔ y} occurs. A vertex cluster of ω is a
maximal connected component of the set of vertices (it can be an isolated vertex). Given
a percolation configuration ω, we denote by o(ω) its number of open edges, and k(ω) its
number of vertex clusters.

A boundary condition on G is a partition η = P1 ∪ · · · ∪ Pk of ∂G. From a configuration
ω ∈ {0, 1}E(G), we create a configuration ωη by identifying together the vertices that belong
to the same Pi of η. Two particular boundary conditions, that we shall call the free boundary
condition (resp. wired boundary condition), consist in the partition made of singletons
(resp. of the whole set ∂G). We shall write η = 0 (resp. η = 1) for this specific boundary
condition.

Definition 3.5.1. Let G = (V (G), E(G)) be a finite subgraph of Z2, and η be a boundary
condition on G. Let p ∈ [0, 1] and q > 0. The random-cluster measure on G with boundary
condition η is the following measure on percolation configurations on G:

ϕηp,q,G (ω) =
1

Zηp,q,G

(
p

1− p

)o(ω)
qk(ω

η),

where Zηp,q,G > 0 is the normalization constant ensuring that ϕηp,q,G is indeed a probability
measure. We shall refer to Zηp,q,G as the partition function of the model.

It is classical that for η = 0 and η = 1, this measure can be extended to the whole Z2, by
taking the weak limit of the measures ϕηp,q,Gn

over any exhaustion (Gn)n∈N of Z2, and that
the limit measure does not depend of the choice of the exhaustion. Below, we will simply
write ϕηp,q instead of ϕη

p,q,Z2 . A very fundamental feature of this model is that it undergoes a
phase transition: namely for any q ≥ 1, there exists a critical parameter pc = pc(q) ∈ (0, 1)
such that:

- ∀p < pc(q), ϕ
1
p,q (0↔∞) = 0.

- ∀p > pc(q), ϕ
0
p,q (0↔∞) > 0.

We are going to be interested in the first case - called the subcritical regime. In this case
it is well known that the choice of boundary conditions does not affect the infinite volume
measure: thus we drop η from the notation and simply write ϕp,q for the unique infinite
volume measure when p < pc(q).

Another well-known feature of the subcritical regime is the existence and the positivity of the
following limit for any x ∈ S1, called the correlation length:
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ξp,q(x) := − lim
n→∞

n

log ϕp,q [0↔ ⌊nx⌋]
> 0.

3.5.2 Extension of the results to the random-cluster model

For the rest of this section, let us fix q ≥ 1 and 0 < p < pc(q). Because of the exponential
decay of the size of the cluster of 0, it is easy to see that almost surely, the outermost open
circuit surrounding 0 is well-defined. Following [74], we call it Γ0. Γ0 sampled according
to ϕp,q has to be seen as the analog of Γ sampled according to Pλ in our model. It remains
to introduce the analog of the event {A(Γ) ≥ N2}. Indeed introduce the area trapped by
the circuit A(Γ0), and define the conditioned measure ϕN2

p,q := ϕp,q
[
· | A(Γ0) ≥ N2

]
. This

measure is the analog of PN2

λ . We now compare the properties of Γ sampled according to
PN2

λ with the properties of Γ0 sampled according to ϕN2

p,q .

Global curvature: the Wulff shape. The first essential feature exhibited by PN2

λ is the
convergence of its sample paths at the macroscopic scale towards a deterministic curve
given by the solution of a variationnal problem. This is a very classical result in statistical
mechanics known as the Wulff phenomenon (see [47, 29] for detailed monographs about this
theory). Define the following compact set:

W = ν
⋂
u∈S1
{t ∈ R2, ⟨t, u⟩ ≤ ξ−1

p,q (u)},

with the constant ν > 0 being chosen so that the setW is of volume 1 (and ⟨·, ·⟩ denoting the
usual scalar product on R2). The boundary ∂W of the Wulff shape plays the role of the limit
shape fλ in our model. Indeed, one has the following result, which is the exact analog of
Theorem 3.1.6, and appears in [74, Proposition 1]: for any ε > 0,

ϕN
2

p,q [dH
(
∂W, N−1Γ0

)
> ε] −−−→

n→∞
0.

Moreover we used at several occasions the concavity and differentiability of fλ: it is well
known (see [25, Theorem B]), thatW is indeed a strictly convex set and that its boundary
∂W is analytic.

Local Brownian nature of the interface. A second dramatic feature of the model is
the Brownian nature of the interface under a scaling of the type N−1/3Γ(tN2/3). Indeed,
Donsker’s invariance principle is heavily used in Subsection 3.3.2 to argue that the area
captured by Γ in a cone of angular opening of orderN−1/3 is of order at most βN , with some
Gaussian tails on β. This is also the case in the random-cluster model, and is an instance of
the celebrated Ornstein–Zernike theory. Indeed it is known since the breakthrough work
of [25] that a subcritical cluster of FK percolation conditionned to link two distant points is
asymptotically Brownian whenever the distance between the points goes to infinity. Hence,
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an analog of Donsker’s invariance principle holds for a percolation interface at the scale
(N1/3, N2/3), and the arguments of Subsection 3.3.2 can be reproduced mutatis mutandi.
For precise statements, see [25, Theorem A, Theorem C] for the local Gaussian asymptotic
for a subcritical cluster and the invariance principle towards a Brownian bridge for a rescaled
subcritical cluster.

Brownian Gibbs property in the random-cluster model. Perhaps the most essential
tool used through the work is what was referred to - according to [37] - as the Brownian
Gibbs property of the model, stating that if one forgets some portion of the walk Γ, then
conditionally on the remaining portion of Γ, the distribution of the erased part is simply the
distribution of a random walk conditioned to link both parts of the remaining non-erased
walk Γ, conditioned on the event that the total enclosed area is at least N2.

For the random-cluster model, the existence of this Brownian Gibbs property is less clear, for
two distinct reasons. The first reason is that Γ0 lacks - at least locally - the oriented structure
of our random walk model. Thus, due to possible backtracks of Γ0 it is not a priori clear that
one is able to perform the resampling operation between any two points, which could be a
possible obstruction to the strategy described in this work. The second possible obstacle
to the Brownian Gibbs property is the lack of independence: indeed the Spatial Markov
property of the random-cluster model (see [49]) is the exact analog of the Brownian Gibbs
property. However, opposed to our random walk model, one has to take into consideration
the boundary conditions enforced by the conditionning on the circuit outside of some fixed
region. This could be a problem, as our strategy strongly relies on independence of the
resampled piece - conditionnally on the area constraint.

These two obstructions have successfully been overcome by Alan Hammond in [73]. We
refer to this work to observe that one can indeed implement the resampling strategy in the
context of the random-cluster model. However, in the remainder of this section, we quickly
explain the strategy to overcome the two difficulties pointed out previously.

(i) Renewal structure and regularity of the outermost circuit. It was observed in [73]
that the first difficulty can be overcome by implementing the resampling strategy only
between renewal points of the outermost circuit. For the precise definition of these
points, see [73, Definition 1.9]: these are precisely the sites where the circuit can be
resampled without any backtrack problem. Then, the main result of [73], stated in
Theorem 1.1, is that the probability of not seeing such a point in a cone of angular
opening uN−1 decays faster than exp(−u2). Since all our resamplings take place in
sectors of angular opening of order N−1/3, one sees that imposing that the resampling
occurs between renewals does not change the scaling of the quantities that we are
computing.

(ii) Exponential mixing versus independence. The second obstruction is ruled out
by the exponential mixing property of subcritical random-cluster models (see [49]).
Again, since our reasoning takes place at scales of order N1/3 while the latter property
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ensures that random-cluster configurations decorrelate at a polynomial rate between
spatial scales of logarithmic order, the lack of independence is not a problem in our
setting (see the discussion in [74, Section 2.2]).

We hope to have convinced the careful reader that our techniques, even though written in a
simple context, are robust and suitable to the analysis of any subcritical statistical mechanics
models exhibiting the features discussed above (which in turn should be the case at least in a
wide range of models). Finally let us conclude this section by mentioning that thanks to the
well-known Edwards–Sokal coupling, this analysis might possibly allow the identification of
the fluctuations scale of the facets of a droplet in a supercritical Potts model with q colours,
which is maybe a more physically appealing conclusion.

Appendix

3.5.3 Computations on the simple random walk

This subsection is devoted to the proofs of Lemmas 3.3.4, 3.4.3 and 3.4.18 . The proofs are
adapted from [74].

Proof of Lemma 3.3.4. We assume that there exists some ε > 0 such that ε ≤ θ(x, y) ≤
π/2− ε. Let h = ∥x− y∥. Let R be the rectangle whose up-left corner is x, down-right
corner is y and which has horizontal and vertical sides. Since θ(x, y) ∈ [ε, π/2− ε], R is not
degenerate. We start by changing the coordinates. We set z0 = (0, 0), z1 = (h/4, 10η

√
h),

z2 = (h/2, 5η
√
h), z3 = (3h/4, 10η

√
h) and z4 = (h, 0). Let Rθ : R2 → R2 be the

rotation of the plane which maps [x, y] to an horizontal segment and T the translation which
maps x to 0. Let R̃ = (T ◦ Rθ)(R). To ensure that z1, z3 ∈ R̃, we set N0 = N0(ε, η) large
enough so that for h ≥ N0,

arctan(40ηh−
1
2 ) ≤ ε.

We now assume that h ≥ N0. We will need the following definitions.

A θ-path is an element of (T ◦ Rθ)(Λx→y). Given u, v ∈ R2 and γ ∈ Λx→y, we say that u
and v are θ-connected in γ if u and v belong to (T ◦Rθ)(γ). For i ∈ {0, . . . , 3}, letHi be the
event that zi and zi+1 are θ-connected by a θ-path which fluctuates less than 10 ∥ zi+1−zi ∥

1
2

around the segment [zi, zi+1]. Finally, define the event Shape = H0 ∩H1 ∩H2 ∩H3, see
Figure 3.8.

Notice that
Shape ⊂ GAC (x, y, η) .

Indeed, let Q be the rectangle [h/4, 3h/4]× [0, 5η
√
h] (see Figure 3.8). Then, if γ realises

Shape, (T ◦ Rθ)−1(Q) and γ do not cross, except maybe on a small region of area O(h)
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5η
√
h

10η
√
h

Qz2

z1 z3

h

Figure 3.8: Illustration of the event Shape introduced in the proof of Lemma 3.3.4. The
θ-path is allowed to fluctuate in the region surrounded by the dashed line.

around (T ◦ Rθ)−1(z2). Hence, provided that N is large enough,

|Enclose(γ ∩Ax,y)| ≥ |T0,x,y|+
5

2
ηh

3
2 −O(h)

≥ |T0,x,y|+ ηh
3
2 .

Now, it remains to get a good estimate on Px,y[Shape]. A simple computation coming from
Gaussian fluctuations gives that there exists a constant c > 0 such that for i ∈ {0, . . . , 3},

Px,y[Hi] ≥ cPx,y[zi ↔ zi+1]11.

We then have,

Px,y[Shape] = Px,y

[
3⋂
i=0

Hi

]

≥ c4
∏3
i=0 |{θ-paths from zi to zi+1}|
|{θ-paths from z0 to z3}|

.

Let a = cos θ and b = sin θ. Define{
α0 =

h
4a+ 10ηh

1
2 b

β0 =
h
4 b− 10ηh

1
2a

,

{
α1 =

h
4a− 5ηh

1
2 b

β1 =
h
4 b+ 5ηh

1
2a

,

{
α2 =

h
4a+ 5ηh

1
2 b

β2 =
h
4 b− 5ηh

1
2a

,

{
α3 =

h
4a− 10ηh

1
2 b

β3 =
h
4 b+ 10ηh

1
2a

,

{
α4 = ha

β4 = hb
.

11{zi ↔ zi+1} is the event that zi and zi+1 are θ-connected.
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It is nothing but a little combinatorial fact that the cardinal of the set of θ-paths linking zi
and zi+1 is

(
αi+βi
αi

)
. So that12,

∏3
i=0 |{θ-paths from zi to zi+1}|
|{θ-paths from z0 to z3}|

=

∏3
i=0

(
αi+βi
αi

)(
α4+β4
α4

) .

A quite tedious computation using Stirling’s estimate yields the existence of some constant
C = C(ε, η) > 0 such that

Px,y[Shape] ≥ Ch−
3
2 .

We are a factor h−3/2 away from the desired result. This factor can be removed by
considering variants of the event Shape where the vertical coordinates of z1, z2, z3 may differ
from the original ones by at most 2ηh1/2. Since these variants of Shape are still included
in GAC (x, y, η) and there being (2η)3h3/2 such events, we get the desired conclusion. We
obtained ,

Px,y [GAC (x, y, η)] ≥ C(η, ε).

Remark 3.5.2. It is clear that the constant C(η, ε) degenerates when ε goes to 0, which
explains the need for the a priori estimate given by Proposition 3.2.5.

Proof of Lemmas 3.4.3 and 3.4.18. Note that the statement of Lemma 3.4.18 implies the
one of Lemma 3.4.3. We then focus on the first one. The proof of Lemma 3.3.4 can be
reproduced with a minor change of parameters. Indeed, define this time z0 = (0, 0), z1 =

(h4 , 10η(h log h)
1
2 ), z2 = (h2 , 5η(h log h)

1
2 ), z3 = (3h4 , 10η(h log h)

1
2 ) and z4 = (h, 0).

Let Rθ : R2 → R2 be the rotation of the plane which maps [x, y] on an horizontal segment
and T the translation which maps x to 0. Let R̃ = T ◦ Rθ(R). To ensure that z1, z3 ∈ R̃,
we set N0 = N0(ε, η) large enough so that for h ≥ N0,

arctan(40η(h log h)−
1
2 ) ≤ ε.

Assume that h ≥ N0. As previously, let, for i ∈ {0, . . . , 3}, Hi be the event that zi and zi+1

are θ-connected by a θ-path which fluctuates less than 10 ∥ zi+1 − zi ∥
1
2 around the segment

[zi, zi+1], and define the event LogShape = H0 ∩H1 ∩H2 ∩H3. As previously, we notice
that

LogShape ⊂ LogGAC(x, y, η).

Moreover,
LogShape ⊂ LogSID(x, y, η).

12We omit integer rounding and the fact that there might not be a θ-path from zi to zi+1 (but rather a θ-path
from zi +B1 to zi+1 +B1 where B1 is the unit ball).
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Indeed, it is straightforward to check that (T ◦Rθ)−1(z2) accomplishes the born on the local
roughness:

d((T ◦ Rθ)−1(z2), C(γ)) ≥ d(z2, [z1, z3])

= 5η(h log h)
1
2 +O(1).

Finally, the estimate of Px,y [LogShape] follows the one of Px,y[Shape] conducted in the
preceding lemma. Defining a = cos θ, b = sin θ and{

α0 =
h
4a+ 10η(h log h)

1
2 b

β0 =
h
4 b− 10η(h log h)

1
2a

,

{
α1 =

h
4a− 5η(h log h)

1
2 b

β1 =
h
4 b+ 5η(h log h)

1
2a

,

{
α2 =

h
4a+ 5η(h log h)

1
2 b

β2 =
h
4 b− 5η(h log h)

1
2a

,

{
α3 =

h
4a− 10η(h log h)

1
2 b

β3 =
h
4 b+ 10η(h log h)

1
2a

,

{
α4 = ha

β4 = hb
.

As previously, we can use Stirling’s estimate to infer that there exists C = C(ε) > 0 such that

Px,y[LogShape] ≥ h−
3
2h−Cη

2
.

We recover the result by considering h3/2 variants of the event LogShape, as above.

Multivalued map principle

If A and B are two finite sets, we say that any function T : A→ P(B) is a multivalued map
and for any b ∈ B, we write T−1(b) = {a ∈ A, b ∈ T (a)}.

Lemma 3.5.3 (Probabilistic multivalued map principle). Let (Ω1,P1) , (Ω2,P2) be two
discrete probability spaces, let A (resp. B) be a measurable subset of Ω1 (resp. Ω2) and let
T : A→ P(B) be a multivalued map. We assume that the following quantities are finite:

φ(T ) := max
a∈A

max
b∈T (a)

P1(a)

P2(b)
<∞,

ψ(T ) :=
maxb∈B

∣∣T−1(b)
∣∣

mina∈A |T (a)|
<∞.

Then,
P1[A] ≤ φ(T )ψ(T )P2[B].

Proof. The lemma follows by the following simple computation:

P1 [A] =
∑
a∈A

∑
b∈T (a)

P1 [a]

P2 [b]
P2[b] |T (a)|−1

≤ φ(T )
∑
b∈B

P2[b]
∑

a∈T−1(b)

|T (a)|−1

≤ φ(T )ψ(T )P2[B].
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Chapter 4

Multiple interfaces and entropic repul-
sion

4.1 Introduction

Rigorous understanding of the behaviour of interfaces in statistical mechanics models has
been the focus of intensive study for more than 50 years, especially in the case of the Ising
model. The first rigorous results were perturbative and made use of the Pirogov–Sinaı̈
theory to show that a low temperature two-dimensional Ising interface converges, after an
appropriate diffusive scaling, towards a Brownian bridge [63, 79]. However, these works are
restricted to the very low temperature regime, even if the belief was that the result should
hold for any subcritical temperature.

In the beginning of the XXIst century, the development and the understanding of the rigorous
Ornstein–Zernike theory, first in Bernoulli percolation and later on in the context of more
dependent models such as the Ising and Potts models [22, 24, 25], provided a new powerful
tool for a detailed study of the subcritical phase of these percolation or spin models. The
structural output of this theory is the probabilistic description of long clusters (or equivalently
of long interfaces as we shall see below) in terms of one-dimensional “irreducible pieces”
behaving almost independently (for a precise statement, we refer to Theorem 4.2.7). In
particular, the diffusive scaling limit of interfaces at any subcritical temperature could
be obtained in the case of the Ising model as a quite simple byproduct of this robust
theory in the work of Greenberg and Ioffe [68] (see [92] for the simpler case of Bernoulli
percolation).

Later on, this technique has been found to be efficient for studying interfaces interacting with
their environment. Indeed, the above mentioned works deal with unconstrained (also called
free) interfaces, but recent works have been extending the study of these interfaces to broader
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settings in which non-trivial interactions with the environment are added. Let us cite [102]
for the case of a defect line in the Potts model, and — much more related to this work — [84]
for the treatment of a Potts interface above a boundary wall. These examples of interfaces
interacting with their close environment have turned out to be more delicate to handle and in
certain conditions have been shown to exhibit highly non-trivial behaviours such as wetting
transitions, which have been studied in [87].

Of the same nature is the study of a system of multiple interacting interfaces, which is the
focus of the present work. Indeed, this paper determines the scaling behaviour of a finite
number of long clusters of subcritical Fortuin–Kasteleyn (FK) percolation, conditioned
not to intersect; subcritical percolation clusters mimic interfaces in the low temperature
regime.

An interesting feature of this setting is that when conditioned not to intersect, the interaction
between the clusters can turn out to be attractive, a priori allowing the existence of a pinning
transition — a regime where this attraction is so strong that the clusters actually remain
at a bounded distance from each other. We rule out the existence of such a transition. In
the fashion of [84], we show that the behaviour of this system obeys an entropic repulsion
phenomenon: the entropy caused by the large number of possible clusters wins over the
energetic reward obtained by keeping them close together, all the way up to the critical point.
Such a phenomenon has been previously identified in a variety of settings, for instance in the
three-dimensional semi-infinite Ising model at low temperatures [62], the 2+1-dimensional
SOS model above a hard wall [27], a 1+1-dimensional interface above an attractive field
in presence of a magnetic field [109] or a supercritical Potts interface above a wall [84], to
mention but a few works studying this phenomenon.

In this work, entropic repulsion of the FK clusters at any subcritical temperature is established
in Proposition 4.4.8, which is probably the most important output of this work. As a byproduct,
we derive two results regarding the global behaviour of such a system of conditioned clusters.
The first one is the diffusive scaling limit of such a system, which is shown to be a system
of Brownian bridges conditioned not to intersect: the so-called Brownian watermelon.
Moreover, we observe that the entropic repulsion phenomenon also allows the computation
— up to a multiplicative constant — of the probability of the existence of such a system of
clusters. Finally, as a byproduct of the latter observation, we also obtain the asymptotics of the
probability of the occurrence of a large finite connection in the supercritical random-cluster
model.

The method is in spirit close to that of [84], but with considerable additional difficulties.
These are essentially due to the fact that the interaction is not only between a random object
and a deterministic one, but between several random objects, forcing one to control their
joint behaviour. The proofs make heavy use of the Ornstein–Zernike theory for subcritical
random-cluster models, developed in [25].
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4.1.1 Definitions of the random-cluster model and the Brownian
watermelon

The random-cluster model

The model of interest is the so-called random-cluster model (also known as FK-percolation).
We first recall its definition and a few basic properties (we refer to [49] for a complete
exposition). The random-cluster model on Z2 is a model of random subgraphs of Z2. Its law
is described by two parameters, p ∈ [0, 1] and q > 0.

Let G = (V (G), E(G)) be a finite subgraph of Z2. We denote its inner boundary (resp.
outer boundary) by

∂G =
{
x ∈ V (G), ∃y /∈ V (G), {x, y} ∈ E(Z2)

}
and

∂extG =
{
x /∈ V (G), ∃y ∈ V (G), {x, y} ∈ E(Z2)

}
, respectively.

A percolation configuration on G is an element ω ∈ {0, 1}E(G). We say that an edge e ∈ G
is open if ω(e) = 1 and closed otherwise. Two vertices x, y ∈ Z2 are said to be connected if
there exists a path of nearest neighbour vertices x = x0, x1, . . . , xn = y such that the edges
{xi, xi+1} are open for every 0 ≤ i ≤ n− 1. In this case, we say that the event {x ↔ y}
occurs. A vertex cluster of ω is a maximal connected component of the set of vertices (it can
be an isolated vertex). Given a percolation configuration ω, we denote by o(ω) its number of
open edges, and by k(ω) its number of vertex clusters.

A boundary condition on G is a partition η = P1 ∪ · · · ∪ Pk of ∂G. From a configuration
ω ∈ {0, 1}E(G), we create a configuration ωη by identifying the vertices that belong to the
same Pi of η. Two particular boundary conditions, that we shall call the free boundary
condition (resp. wired boundary condition), consist in the partition made of singletons
(resp. of the whole set ∂G). We shall write η = 0 (resp. η = 1) for this specific boundary
condition.

Definition 4.1.1. Let G = (V (G), E(G)) be a finite subgraph of Z2, and η be a boundary
condition on G. Let p ∈ [0, 1] and q > 0. The random-cluster measure on G with boundary
condition η is the following probability measure on percolation configurations on G:

ϕηp,q,G (ω) =
1

Zηp,q,G

(
p

1− p

)o(ω)
qk(ω

η),

where Zηp,q,G > 0 is the normalisation constant ensuring that ϕηp,q,G is indeed a probability
measure. We shall refer to Zηp,q,G as the partition function of the model.

It is classical that for η = 0 and η = 1, this measure can be extended to the whole plane Z2,
by taking the weak limit of the measures ϕηp,q,Gn

over any exhaustion (Gn)n∈N of Z2, and
that the limit measure does not depend of the choice of the exhaustion. Below, we will simply
write ϕηp,q instead of ϕη

p,q,Z2 .
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A very fundamental feature of this model is that it undergoes a phase transition. Namely for
any q ≥ 1, there exists a critical parameter pc = pc(q) ∈ (0, 1) such that:

• ∀p < pc(q), ϕ
1
p,q (0↔∞) = 0;

• ∀p > pc(q), ϕ
0
p,q (0↔∞) > 0,

where {0↔∞} is the event that the cluster of 0 is infinite.

We are going to be interested in the first case — called the subcritical regime. In this case
it is well known that the choice of boundary conditions does not affect the infinite volume
measure. We thus drop η from the notation and simply write ϕp,q for the unique infinite
volume measure when p < pc(q). Another important feature of the subcritical random-cluster
model is the existence and the positivity of the following limit:

τp,q := lim
n→∞

− 1

n
log [ϕp,q (0↔ (n, 0))] . (4.1)

We call this quantity the inverse correlation length in the direction e⃗1. Moreover, standard
subadditivity arguments yield that

∀x ∈ Z2, ϕp,q [x↔ x+ (n, 0)] ≤ e−τp,qn. (4.2)

Since p, q will be fixed through this work, we shall simply write τ > 0 instead of τp,q.

The Brownian watermelon

The Brownian watermelon is a stochastic process that arises in various areas of probability
theory, like random matrix theory [11], integrable probability [88], but also more recently in
the study of the KPZ universality class [76].

We give a brief definition of this object, and we refer to [99], [67] and [43] for the full
construction and details. Let r ≥ 1 be an integer. We define the Weyl chamber of order
r:

W = {(x1, . . . , xr) ∈ Rr, x1 < · · · < xr} .

We shall also introduce the functional Weyl chamber in the interval [s, t] for 0 ≤ s < t
(for any set A ⊂ R, the set C(A,Rr) denotes the space of continuous functions from A to
Rr):

W[s,t] = {f ∈ C([s, t],Rr), ∀s ≤ ℓ ≤ t, f(ℓ) ∈W}.

Moreover let ∆ denote the Vandermonde function, defined for any (x1, . . . , xr) ∈ Rr
by:

∆(x1, . . . , xr) =
∏

1≤i<j≤r
(xj − xi).
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Definition 4.1.2 (Brownian watermelon). The Brownian watermelon with r bridges is
the continuous process

(
BW

(r)
t

)
0≤t≤1

obtained by conditioning r independent standard
Brownian bridges not to intersect in (0, 1). It is a random object of C([0, 1],Rr).

Remark 4.1.3. Since the non-intersection event has null probability for r random bridges as
soon as r ≥ 2, the latter conditioning is rigorously done by means of a Doob h-transformation
by the harmonic function ∆. We refer to [99] and [54] for the details of the construction (and
the fact that ∆ is harmonic for a system of r standard bridges). Moreover, it can be shown,
by means of the Karlin–McGregor formula, that for any 0 < t < 1

P
[
BW

(r)
t ∈ dz

]
∝ 1

(t(1− t))r2/2
∆2(z)e

− |z|2
2t(1−t)1z∈Wdz. (4.3)

Remark 4.1.4. Alternatively, the Brownian watermelon can be built via the following method:
consider a system (Bε

t )0≤t≤1 of r independent standard Brownian bridges started from 0,
ε, . . . , (r − 1)ε respectively. Then under the conditioning on the event {Bε

t ∈ W0,1} (this
happens with positive probability), the following weak limit exists in C([0, 1],Rr) when
ε→ 0 and is called the Brownian watermelon:

(Bε
t )0≤t≤1

(d)−−−→
ε→0

(BW
(r)
t )0≤t≤1.

For more information on this construction, see [99] and [76].

Notations and conventions. If an and bn are two sequences of real numbers, we shall
write an ∼ bn when an

bn
−−−→
n→∞

1. We shall also write an = o(bn) when an
bn
−−−→
n→∞

0 and
an = O(bn) when there exists a constant C > 0 such that |an| ≤ C|bn| for all n ≥ 0.
Moreover, we shall write an ≍ bn whenever an = O(bn) and bn = O(an). Finally, the
generic notations c, C > 0 will denote constants depending only on p and q, that may change
from line to line during computations. We denote by ∥ · ∥ the Euclidian norm on Rd.

4.1.2 Exposition of the results

In this paper, we study the scaling limit of a system of subcritical clusters conditioned
on a connection and a non-intersection event. We first start by defining these percolation
events.

Definition 4.1.5 (Connection event, Non-intersection event). Let x, y ∈W ∩ Zr and n ≥ 0.
Then we define the multiple connection event Connx,y by

Connx,y = {∀1 ≤ i ≤ r, (0, xi)↔ (n, yi)} .

The non-intersection event will be defined by

NIx =
{
∀1 ≤ i < j ≤ r, C(0,xi) ∩ C(0,xj) = ∅

}
,
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where Cu denotes the cluster of the vertex u ∈ Z2. In the rest of this work, as n, x, y will be
fixed, we shall abbreviate Connx,y by Con and NIx by NI. Moreover, we will also abbreviate
C(0,xi) by Ci.

Our main result consists in the estimation of the probability that {Con,NI} occurs in a
subcritical random-cluster measure.

Theorem 4.1.6. Let q ≥ 1, and 0 < p < pc(q). Let r ≥ 1 be a fixed integer. Then, there exist
two constants C−, C+ > 0 such that for any sequences xn, yn of elements of W satisfying
∥xn∥, ∥yn∥ = o(

√
n), when n is sufficiently large,

C−V (xn)V (yn)n
− r2

2 e−τrn ≤ ϕ [Con,NI] ≤ C+V (xn)V (yn)n
− r2

2 e−τrn,

where V is the function defined in Theorem 4.5.5.

Remark 4.1.7. The function V is not explicit. However, it is known that (see Theorem 4.5.5)
:

When min
1≤i≤r−1

{|(xn)i+1 − (xn)i|} −−−→
n→∞

+∞, then V (xn) ∼ ∆(xn) as n→∞.

Moreover, when x, y are fixed elements of W , the statement simplifies as

ϕ [Con,NI] ≍ n−
r2

2 e−τrn.

An interesting corollary, which is a direct consequence of Theorem 4.1.6 in the case r = 2,
can be obtained using the methods of [23], where the same result is proved in the case of
Bernoulli percolation (corresponding to q = 1 in the random-cluster model). Let us define
the truncated inverse correlation length in the direction e⃗1 by

τ fp = lim
n→∞

− 1

n
log ϕ [0↔ (n, 0), |C0| <∞] .

It is well known that on Z2, whenever p ̸= pc(q), one has that τ fp > 0. Moreover, it is clear
that whenever p < pc(q), τ fp = τp, where τp has been defined in (4.1). Then, Theorem 4.1.6
allows to compute the prefactor in the supercritical truncated correlation function.

Corollary 4.1.8. Let q ≥ 1 and p ∈ (pc, 1). Let ϕ be the unique infinite-volume random-
cluster measure on Z2. Then,

ϕ [0↔ (n, 0), |C0| <∞] ≍ 1

n2
e
−2τ f

p∗n,

where p∗ stands for the dual parameter of p (see (4.6) for the relation linking p and p∗).
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Remark 4.1.9. In particular, we obtain the following equality, holding for any supercritical
p > pc

τ fp = 2τ fp∗(= 2τp∗).

This is a very specific instance of duality, and such a relation is not expected to hold in higher
dimensions. The result was already well known in the case of Bernoulli percolation, see for
instance [35] or [69, Theorem 11.24].

Our second result consists in the study of the behaviour of the r clusters created by conditioning
on {Con,NI}. It will be formulated in terms of the envelopes of a cluster.

Definition 4.1.10 (Upper and lower envelopes of a cluster). Let ω ∈ Con. Then for any
0 ≤ k ≤ n and 1 ≤ i ≤ r we define (see Figure 4.1)

Γ+
i (k) = max {ℓ ∈ Z, (k, ℓ) ∈ Ci} and Γ−

i (k) = min {ℓ ∈ Z, (k, ℓ) ∈ Ci} .

It is clear that Γ±
i are well defined, since all clusters are almost surely finite in the subcritical

regime, and the sets above are not empty due to Con. We will see these quantities as functions
from [0, n] to R by considering the piecewise affine functions Γ±

i (t) that coincide with Γ±
i

on the integers t = k.

Our second result is the following:

Theorem 4.1.11. Fix x, y ∈W ∩ Zr and p ∈ (0, pc(q)). Then under the family of measures
ϕp,q [ · |Con,NI] (we recall that Con,NI depend on n), there exists σ > 0 such that:(

1√
n

(
Γ+
1 (nt), . . . ,Γ

+
r (nt)

))
0≤t≤1

(d)−−−→
n→∞

(σBW
(r)
t )0≤t≤1, (4.4)

where BW(r) is the Brownian watermelon with r bridges, and where the convergence holds
in the space C ([0, 1],Rr) endowed with the topology of uniform convergence. Moreover,
almost surely, for all 1 ≤ i ≤ r,

1√
n

∥∥Γ+
i − Γ−

i

∥∥
∞ −−−→n→∞

0 (4.5)

Remark 4.1.12. A consequence of (4.5) is that in the setting of Theorem 4.1.11, the clusters
remain of width o(

√
n). Actually, we prove that almost surely, ∥Γ+

i − Γ−
i ∥∞ = O(log n).

In particular, the choice of the upper interfaces Γ+
i in (4.4) is arbitrary and can be replaced

by any assignment of ± for the choice of interfaces to converge.

Remark 4.1.13. The result is stated for fixed x, y ∈W ∩ Zr. However, the careful reader
may check that our method allows to treat the case where x and y depend on n. Indeed, as
soon as xn, yn are two sequences of W ∩ Zr satisfying

∥xn∥ = o(
√
n) and ∥yn∥ = o(

√
n),

our methods may apply and yield the same scaling limit.
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Figure 4.1: Depiction (in red) of the envelopes Γ+ and Γ− of a percolation cluster. The
blue dashed path corresponds to the more natural notion of interface that could have been
considered instead. However, as explained in Remark 4.1.14, this blue path converges in the
space of continuous curves towards the Brownian watermelon as well.

Remark 4.1.14. For the reader familiar with statistical mechanics, it might seem strange that
our result is formulated in terms of these envelopes and not in terms of the upper and lower
interfaces running along the boundary of the clusters Ci. However, it may be shown that
the interfaces also converge to the paths of BW(r)

t (as paths in [0, 1]× Rr). We then chose
to work with Γ± since we can use the space of continuous functions from [0, n] to Rr for
studying convergence questions, which is easier to treat than the space of continuous curves
which would be needed when considering those interfaces.

4.1.3 Background on the random-cluster model

We first recall some basic properties of the random-cluster model (once again we refer to [49]
for a complete exposition). These properties are valid for any choice of parameters p and q.

Positive association. The space {0, 1}E(Z2) can be equipped with a partial order: we say
that ω1 ≤ ω2 if for any e ∈ E(Z2), ω1(e) ≤ ω2(e). An event A will be called increasing if
for any ω1 ≤ ω2, ω1 ∈ A ⇒ ω2 ∈ A. The FKG inequality then states that for any increasing
events A,B, any graph G and any boundary conditions η,

ϕηG,p,q[A ∩ B] ≥ ϕ
η
G,p,q[A]ϕ

η
G,p,q[B]. (FKG)

This property implies in particular that for any boundary conditions η1 ≤ η2 (meaning that
the partition η1 is finer than η2), for any increasing event A,

ϕη1G,p,q [A] ≤ ϕ
η2
G,p,q [A] . (CBC)

This property is called the comparison of boundary conditions and may also be stated as
“ϕη1 is stochastically dominated by ϕη2”.
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Duality. Let (Z2)∗ = (12 ,
1
2) + Z2 and consider the lattice (Z2)∗ with edges between nearest

neighbours. This lattice is called the dual lattice. It has the property that for any e ∈ E(Z2),
there exists a unique edge e∗ ∈ E((Z2)∗) that crosses e. To a percolation configuration
ω ∈ {0, 1}E(Z2) we can associate a dual configuration ω∗ on the dual lattice by setting
ω∗(e∗) = 1 − ω(e). Then we remark that — as soon as the parameters guarantee that
there exists a unique Gibbs measure — if ω is sampled according to ϕp,q, then ω∗ has the
distribution of ϕp∗,q∗ , where

q = q∗ and
pp∗

(1− p)(1− p∗)
= q. (4.6)

It has been proved by V. Beffara and H. Duminil-Copin in [13] that pc(q) = p∗c(q), meaning
that the parameter pc(q) is self-dual. Also observe that if ϕp,q is subcritical, then ϕp∗,q∗ is
supercritical and vice-versa.

Spatial Markov property. Let G be a subgraph of Z2, and G′ ⊂ G a subgraph of G. Let
ξ be a percolation configuration on Z2. Observe that it induces a boundary condition on
G — that we name η(ξ) — by identifying the vertices wired together by ξ outside G, and a
boundary condition on G′ - that we name η′(ξ) by the same principle. Then,

ϕ
η(ξ)
G,p,q

[
· |ω(e) = ξ(e), ∀e /∈ G′] = ϕ

η′(ξ)
G′,p,q[·]. (SMP)

Finite energy property. When p /∈ {0, 1}, there exists a constant ε > 0 depending only on
p and q such that for any finite graph G, any finite F ⊂ E(G), any boundary condition η,
and any percolation configuration ω0,

ε|F | ≤ ϕηG,p,q [ω(e) = ω0(e), ∀e ∈ F ] ≤ (1− ε)|F |.

Weak ratio mixing. In the subcritical regime, the random-cluster measure also enjoys the
following weak ratio mixing property. For two finite connected sets of edges E1 and E2,
define their distance d(E1, E2) as the Euclidean distance between the set of their respective
endpoints. Then, for any graph G, any boundary condition η, any q ≥ 1 and any p < pc(q),
there exists a constant c > 0 such that for any events A and B depending on edges of E1 and
E2 respectively, ∣∣∣∣∣1− ϕηG,p,q[A ∩ B]

ϕηG,p,q[A]ϕ
η
G,p,q[B]

∣∣∣∣∣ < e−cd(E1,E2). (MIX)
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4.1.4 Outline of the proof

The main idea of modern Ornstein–Zernike theory is to couple a subcritical percolation
cluster conditioned on realizing a connection event {x↔ y} with a random walk started
from x and conditioned to reach y. Such a cluster is essentially a one-dimensional object. As
the knowledge on conditioned random walks is very broad, in particular in terms of Local
Limit Theorems and invariance principles, such a coupling allows to derive properties of the
original cluster. In our setting, we would like to couple a system of r percolation clusters
conditioned on Con∩NI with a system of r random walks conditioned on a hitting event and
on not intersecting each other. However, such a coupling is not immediately available in this
setting and we have to rely on several comparison principles to show that the behaviours of
these two types of systems are close. Once this task is accomplished, we use an invariance
principle for a system of non-intersecting random walks to derive Theorem 4.1.11.

Let us be a bit more precise about the method. We first show that Ornstein–Zernike theory
extends to r non-intersecting clusters sampled according to ϕ⊗r (the product of r random
cluster measures on Z2) and thus interacting only through the conditioning. This allows us to
derive an invariance principle for this product measure.

The next step is to transmit the results obtained for the product measure to the “true”
FK-percolation measure. As crucially observed in [84], this can be done proving an a
priori (meaning independent of the above mentioned coupling) repulsion estimate: under the
conditioned random-cluster measure, the clusters naturally move far from each other and
never come near each other again. This input will then allow us to use the mixing property of
subcritical FK-percolation to derive Theorems 4.1.6 and 4.1.11.

4.1.5 Organization of the paper

We first focus on Theorems 4.1.6 and 4.1.11. As explained previously, the proof consists of
two independent tasks: comparing the behaviours of the percolation clusters and of a system
of interacting random walks, and then obtaining the scaling limit and fine estimates on such a
system of random walks. Our interest mainly being statistical mechanics, we postpone all
the results about interacting random walks to Section 4.5, which is independent of the other
sections, and may be skipped by readers only interested in the percolation aspects. Section 4.2
consists in a review of the rigorous Ornstein–Zernike results for one single subcritical cluster
of FK-percolation. Section 4.3 is devoted to the study of the scaling limit under the product
measure through a straightforward extension of the Ornstein–Zernike theory to this setting,
as discussed before. Finally, Section 4.4 is devoted to the proof of the entropic repulsion
estimates, and thus of the announced result.
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4.2 Ornstein–Zernike theory for a single subcritical FK-
cluster

In the remainder of the paper, we fix q ≥ 1 and 0 < p < pc(q). Since these parameters
will not change throughout the paper, we drop them from the notations and abbreviate
ϕp,q := ϕ.

In this section, we review and discuss the main result of [25] — the Ornstein–Zernike
Theorem. Schematically, this result can be described as follows. Under the conditioned
measure ϕ [ · |y ∈ C0] where y is some vertex far away from 0, the cluster of 0 has a very
particular structure. Indeed, it macroscopically looks like the geodesic from 0 to y. Moreover,
it exhibits typical Brownian bridge fluctuations around this geodesic, and is confined in a very
small tube around this Brownian bridge. The result is precisely stated in Theorem 4.2.7.

Definition 4.2.1 (Directed random walk). A directed measure on Z2 is a probability
measure on N∗ × Z. If X1, . . . , Xn, . . . are independent and identically distributed random
variables sampled according to a directed measure on Z2, then the distribution of process
Sn = X1 + · · ·+Xn is called a directed random walk. We shall call a possible realization
of (Sn) a directed walk on Z2.

In the remainder of the paper, we will often interpret trajectories of directed walks as
real-valued functions defined on R+. Indeed, let ν be a directed measure on Z2 and (Sn)n≥0

the associated directed random walk. Since ν(N∗ × Z) = 1, for any t ≥ 0, the trajectory of
S almost surely intersects the vertical line {t} × R once. Calling this point S(t) provides us
with a continuous and piecewise linear function: moreover this correspondence is one-to-one.
We shall often use notations as {S ∈ A}, where A is a subset of C(R+,R). In that case, S
will have to be taken as the continuous function described above. Let (Sn)n≥0 be a directed
random walk on Z2. If y ∈ Z2, introduce the event

Hity = {∃n ≥ 0, Sn = y} .

4.2.1 Diamond confinement and diamond decomposition

We need a bit of vocabulary, in order to properly state the confinement property of a long
subcritical cluster. Let δ > 0, x ∈ Z2. Following [25], introduce the following subsets of
Z2:

• The δ-forward cone of apex x to be the set Yδ,+x = x+
{
(x1, x2) ∈ Z2, δx1 ≥ |x2|

}
.

• The δ-backward cone of apexx to be the setYδ,−x = x+
{
(x1, x2) ∈ Z2, δx1 ≤ −|x2|

}
.

• If x, y ∈ Z2 are such that x1 < y1, the δ-diamond of apexes x, y is the intersection:

Dδx,y = Yδ,+x ∩ Yδ,−y .

If x = 0, we abbreviate the notation by Dδy.
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Let G be a finite subgraph of Z2 containing the vertex 0 (we say that G is a subgraph of Z2

rooted at 0). We say that:

• (G, v) is δ-left-confined if there exists x ∈ V (G) such that G ⊂ Yδ,−x .

• (G, v) is δ-right-confined if there exists x ∈ V (G) such that G ⊂ Yδ,+x .

• G is δ-diamond-confined if there exist y ∈ V (G) such that G ⊂ Dδy. In that case, we
say that Dδy is the diamond containing G.

Observe that in the previous definitions, if the points x, y do exist, they are necessarily unique.
We denote the set of δ-left-confined subgraphs of Z2 rooted at 0 (resp. δ-right-confined
subgraphs of Z2 rooted at 0, resp δ-diamond-confined subgraphs of Z2 rooted at 0) by CδL
(resp CδR, resp Dδ).

Definition 4.2.2. We now define the notion of displacement along a left-confined, right-
confined or diamond-confined subgraph of Z2.

• Let G be a δ-left-confined subgraph of Z2 rooted at 0. The displacement of G is

XL(G) = x,

where x is the unique vertex of G such that G ⊂ Y−,δ
x .

• Let G be a δ-right-confined subgraph of Z2 rooted at 0. The displacement of G is

XR(G) = −x,

where x is the unique vertex of G such that G ⊂ Y+,δ
x .

• Let G be a diamond-confined subgraph of Z2 rooted at 0. The displacement of G is

X(G) = y,

where y is the only vertex of G such that G ⊂ Dδy.

In order to properly state what is a diamond decomposition of a cluster, we also need to
introduce the operation of concatenation of two confined subgraphs rooted at 0. LetG1 ∈ CδL
and G2 ∈ Dδ. The concatenation of G1 and G2, called G1 ◦ G2, is defined to be the
subgraph

G1 ◦G2 = G1 ∪
(
XL(G1) +G2

)
.

In the same manner, we can concatenate a δ-diamond-confined rooted graph G1 with a
δ-right-confined rooted graph by setting

G1 ◦G2 = G1 ∪
(
XR(G2) +G2

)
.

Finally observe that one can concatenate two δ-diamond-confined rooted graphs by set-
ting

G1 ◦G2 = G1 ∪ (X(G2) +G2) .
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These definitions in hand, we can now define the diamond decompositions of a subgraph of
Z2.

Definition 4.2.3 (Diamond decomposition of a subgraph, skeleton of a subgraph). Let
G be a finite subgraph of Z2 rooted at 0. Then, to any decomposition of the type G =
GL ◦G1 ◦ · · · ◦Gℓ ◦GR with GL ∈ CL, G

R ∈ CR, Gi ∈ Dδ for all i ∈ {1, . . . , ℓ}, can be
associated the concatenation of the confining δ-left cone with all the associated δ-diamonds
and the confining δ-right cone. We call such a subset a diamond decomposition of G:

D(G) = Yδ,−
XL(GL)

◦ DδX(G1)
◦ · · · ◦ DδX(Gℓ)

◦ Yδ,+
XR(GR)

.

Let us call x0 = 0, x1 = XL(GL), xk = X(Gk−1) for 2 ≤ k ≤ ℓ+1, and xℓ+2 = XR(GR).
We then define, for 0 ≤ n ≤ ℓ+ 2,

S(D)(G)n =
n∑
k=0

xk.

The process S(D)(G)n is called the skeleton of the diamond decomposition D(G).

Remark 4.2.4. Observe that diamond decompositions of G are not unique: as soon as there
exists one of them with ℓ ≥ 3, merging inner diamonds allows one to create new (coarser)
diamond decompositions of G. However, any finite subgraph rooted at 0 admits a unique
maximal diamond decomposition: we call it Dmax(G). The skeleton associated to this
decomposition will by called Smax(G) and referred to as the maximal skeleton of G.

Remark 4.2.5. Our object of interest will be the skeleton of random diamond decompositions
of subgraphs of Z2. Amongst the properties of the skeleton associated to a diamond
decomposition of some rooted subgraph G, observe that the vertices of the skeleton of a
diamond decomposition of G are cone-points of G, in the sense that for any n ≤ ℓ+ 2,

G ⊂ Yδ,−S(D)(G)n
∪ Yδ,+S(D)(G)n

.

Furthermore, observe that the skeleton of a diamond decomposition of G is always a finite
directed walk, which motivates the terminology introduced in Definition 4.2.1.

Remark 4.2.6. The structure of the diamond decomposition is here given in the direction
given by the first coordinate axis. However we see that adapting the definitions of the cones,
the diamond decomposition can be defined for any direction s ∈ S1. The results of this work
naturally adapt to this case, with this slight modification.

4.2.2 Ornstein–Zernike theory for one subcritical cluster

We are ready to state the main result of [25], which we shall refer to as the Ornstein–
Zernike Theorem. Set G0 to be the set of connected subgraphs of Z2, rooted at 0.
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Figure 4.2: Two admissible diamond decompositions susceptible to appear in the Ornstein
Zernike Theorem, together with their associated skeleton (in blue). Observe that the darker
one is the maximal diamond decomposition of the cluster.

Theorem 4.2.7 (Ornstein–Zernike Theorem, [25]). There exist two constants C, c > 0 and a
positive δ > 0, such that the following holds. There exist two positive finite measures ρL, ρR
on CδL and CδR respectively, and a probability measure P on Dδ such that for any bounded
function f : G0 → R, any y ∈ Y+

0 ,

∣∣∣eτx1ϕ [f(C0)1y∈C0 ]− ∑
ℓ≥0

GL∈Cδ
L

GR∈Cδ
L

G1,...,Gℓ∈Dδ

ρL(G
L)ρR(G

R)P(G1) · · ·P(Gℓ)f(G)
∣∣∣ ≤ C∥f∥∞e−c∥y∥2 ,

(4.7)
where the sum runs over all GL ∈ CδL, G

R ∈ CδR, G1, . . . , Gℓ ∈ Dδ satisfying the relation

XL(GL) +X(G1) + · · ·+X(Gℓ) +XR(GR) = y.

We also have written G = GL ◦ G1 ◦ · · · ◦ Gℓ ◦ GR in the argument of f . Moreover, the
measures ρL, ρR,P have exponential tails with respect to the length of the displacement:
there exist c′, C ′ > 0 such that

max
{
ρL
[∥∥XL(GL)

∥∥
2
> t
]
, ρR

[∥∥XR(GR)
∥∥
2
> t
]
,P [∥X(G)∥2 > t]

}
< C ′e−c

′t.

In the remainder of the paper, we fix δ to be equal to the value given by Theorem 4.2.7.
In particular, we will not highlight the dependency anymore and we drop it from the
notations.

Remark 4.2.8. For any x ∈ N∗ × Z, define the following three quantities:

• νL(x) =
∑

GL∈CL,XL(GL)=x ρL(G
L),
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• νR(x) =
∑

GR∈CR,XR(GR)=x ρR(G
R),

• ν(x) =
∑

G∈D,X(G)=xP (G).

Then, it is clear that ν is a directed probability measure on Z2, which has exponential tails.
We define PRW to be the directed random walk measure associated to ν.

These definitions allow us to formulate a second version of Theorem 4.2.7 in terms of a
coupling between a percolation cluster conditioned to contain a distant point and a directed
random bridge.

Theorem 4.2.9 (Ornstein–Zernike Theorem; coupling version). Let y ∈ Y+
0 . There exists a

probability space (Ω,F ,Φ0→y) supporting a random variable (C0,S) such that:

• C0 has the distribution of the cluster of 0 under the measure ϕ [ · |y ∈ C0], i.e. if C is
a connected subgraph of Z2 containing 0,

Φ0→y [C = C] = ϕ [C0 = C|y ∈ C0]

• S has the distribution of a directed random walk conditioned to hit y, ie for any ℓ ≥ 1,
any family s1, . . . , sℓ of vertices of Z2,

Φ0→y [S1 = s1, . . . ,Sℓ = sℓ] ∝ νL(s1)νR(y − sℓ)
ℓ∏

k=2

ν(sk − sk−1),

where the symbol ∝ means that one has to normalise the latter quantity to get a proper
probability measure,

• With probability at least 1− Ce−c∥y∥, for all 1 ≤ k ≤ ℓ, Sk ∈ C0 and Sk is a renewal
of C0. Furthermore, for any 1 ≤ k ≤ ℓ− 1, the portion of C0 lying between Sk and
Sk+1 is a δ-diamond-confined subgraph of Z2.

Proof. Fix some y ∈ Y+
0 . We define a probability distribution on the space

CL ×
+∞⋃
l=1

(
ℓ∏

k=1

D

)
× CR

by the formula:

ϕDec
y

[
(GL, G1, . . . , Gℓ, GR)

]
∝ 1XL(GL)+X(G1)+···+X(Gℓ)+XR(GR)=y

×
∑
ℓ≥0

GL∈Cδ
L

GR∈Cδ
L

G1,...,Gℓ∈Dδ

ρL(G
L)ρR(G

R)P(G1) · · ·P(Gℓ).
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Then, for any percolation event A, we form the ratio of (4.7) with f = 1A and (4.7) with
f = 1. We immediately get that the total variation distance between ϕ [ · |y ∈ C0] and the
pushforward of ϕDec

y [ · ] by the concatenation operation is bounded by Ce−c∥x∥2 . It is
classical that this yields the existence of a maximal coupling between those two measures, ie
that one can construct a probability space (Ω,F ,Φ0→y) supporting (C10 , C20) such that

• The distribution of C10 is the distribution of the cluster of 0 under ϕ [ · |y ∈ C0],

• The distribution of C20 is the distribution of the concatenation GL ◦G1 ◦ · · · ◦Gℓ ◦GR
where (GL, G1, . . . , Gℓ, GR) are sampled according to ϕDec

y ,

• Φ0→y(C10 ̸= C20) ≤ Ce−c∥y∥2 .

Now consider the random variable S formed from (GL, G
1, . . . , Gℓ, GR) by the following

formula:

S1 = XL(GL) and Sk = Sk−1 +X(Gk−1) for 2 ≤ k ≤ ℓ.

Then it is immediate that

Φ(0,y) [S1 = s1, . . . ,Sℓ = sℓ] ∝ νL(s1)νR(y − sℓ)
ℓ∏

k=2

ν(sk − sk−1).

Moreover by definition, the Sk’s are renewals of C20 and the portions of C20 lying between two
consecutive Sk’s are δ-diamond-confined. Thus, (Ω,F ,Φ0→y) equipped with the random
variable (C10 ,S) provides us with the desired coupling.

For now, we shall only work in the extended probability space (Ω,F ,Φ0→y). Thus, each
percolation configuration conditioned to contain the distant point y will be sampled together
with a directed random walk bridge: we call this directed random bridge the skeleton of
C0; the associated diamond decomposition will be called the diamond decomposition of
C0. Observe that this enlarged probability space carries extra randomness than the space
supporting ϕ: indeed, to a given percolation cluster can be associated several skeletons that
are randomly chosen by the measure Φ0→y(see Figure 4.2). We adopt the terminology of [25]
by calling the points of S renewals of the cluster. Observe that due to the latter discussion,
all the renewals of C are cone-points, but the converse is not necessarily true.

In the remainder of this paper, we introduce PRW, the measure of the directed random walk
with independent increments sampled according to ν and started from 0.

Remark 4.2.10. We are often going to be interested in observables of the skeleton of a cluster
sampled according to Φ0→y. In that case, Theorem 4.2.9 reads as follows: let f be a bounded
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function of the set of directed random walks. Then,∣∣∣∣∣Φ0→y [f(S)]−
∑
xL,xR

νL(xL)νR(y − xR)ERW [f(xL ◦ S ◦ xR)|S ∈ HitxR−xL ]

∣∣∣∣∣
≤ C∥f∥∞e−c∥y∥2 . (4.8)

In the latter writing, the notationxR◦S◦xL stands for the directed walk obtained by the concate-
nation ofxL, the trajectory ofS, andxR. In the writingERW [f(xL ◦ S ◦ xR)|S ∈ HitxR−xL ],
only S is random - and has law PRW [ · |S ∈ HitxR−xL ].

Finally, the unconditionnal version of (4.2.10) is the following.∣∣∣∣∣eτy1Φ0→y [f(S)]−
∑
xL,xR

νL(xL)νR(y − xR)ERW
[
f(S)1HitxR−xL

] ∣∣∣∣∣ ≤ C∥f∥∞e−c∥y∥2 .

(4.9)

The following lemma states when looking at certain families of observables of the trajectories
of directed walks, it is sufficient to study the measure PRW started from 0 rather than the
intricate second summand of the left-hand side of (4.2.10)

Lemma 4.2.11. There exists a constant ς > 0 such that for any y ∈ Y+
0 , any two sequences

an, bn of positive numbers going to infinity, any bounded function f : C([0, x1],R) → R
continuous with respect to the Skorokhod topology (see [14] for the definition and properties
of this topology),∣∣∣e−τbny1Φ0→bny

[
f
(
a−1
n S(⌊bnt⌋)

)
t≥0

]
− ςERW

[
f
(
a−1
n S(⌊bnt⌋)

)
t≥0

1S∈Hitbny

] ∣∣∣
−−−→
n→∞

0.

We have used the interpretation of directed walks as real-valued functions explained above.

Proof. Set ς = νL(Z2)νR(Z2). By (4.8), it sufficient to prove that∣∣∣ ∑
xL,xR∈Z2

νL(xL)νR(xR)ERW
xL

[
f
(
a−1
n (xL ◦ S ◦ xR)(⌊bnt⌋)

)
t≥0

1S∈HitxL−xR

]
− ςERW

[
f
(
a−1
n S(⌊bnt⌋)

)
t≥0

1S∈Hitbny

] ∣∣∣ −−−→
n→∞

0.

The right-hand side can be dominated by∑
xL,xR∈Z2

νL(xL)νR(xR)ERW
[∣∣f (a−1

n (xL ◦ (S + xL) ◦ xR)(⌊bnt⌋)
)
t≥0

1S∈HitxR−xL

− f
(
a−1
n S(⌊bnt⌋)

)
t≥0

1S∈Hitbny

∣∣].
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Now we take advantage of the exponential tails of νL and νR by splitting the sum in
two parts, the first one running over xL, xR ∈ B(0, log(min(an, bn))), and the remaining
one. Thanks to the exponential tails of νL and νR, the remaining one can be bounded
by 2∥f∥∞min(an, bn)

−c, which indeed goes to 0. The first part is shown to go to 0 by
noticing that when xL, xR ∈ B(0, log(min(an, bn))), the Skorokhod distance between
the two considered functions goes to 0. We conclude by continuity of f and dominated
convergence.

We state two byproducts of Theorem 4.2.7:

Corollary 4.2.12. There exists three constants c, C,K > 0 such that for any y ∈ Y+
0 with

∥y∥2 sufficiently large,

ϕ [C0 has less than K ∥y∥2 renewal points|y ∈ C0] < Ce−c∥y∥2 .

Corollary 4.2.13. There exists a constant K > 0, such that for any y ∈ Y+
0 ,

Φ0→y

[
max

D⊂D(C0)
D diamond

Vol (D) > K(log y1)
2
]
< C ∥y∥−c log∥y∥22 ,

where Vol denotes the Euclidean volume, and where the max is taken over all the diamonds
appearing in the diamond decomposition of the cluster of 0 under the measure Φ(0,y).

Note that the latter bound decays faster than the inverse of any polynomial in ∥y∥2.

4.2.3 Ornstein–Zernike in a strip with boundary conditions

We import a few facts about Ornstein–Zernike theory that will be useful later on in our
analysis. They deal with the uniformity of the Ornstein–Zernike formula in the boundary
conditions and are directly imported from [24, 68]. For y = (y1, y2) ∈ Y+

0 , let us call Stripy
the strip Stripy = [0, y1]× Z. In the following proposition, the probability measure P is the
same object as in Theorem 4.2.7.

Proposition 4.2.14 (Uniform OZ formula in a strip). Let y = (y1, y2) ∈ Y+
0 . Let CLEXT ∋ 0

be a finite connected subset of edges of Y−
0 and CREXT ∋ y be a finite connected subset of

edges of Y+
y . Then there exist two positive and bounded measures ρEXTL , ρEXTR on CL and CR

respectively such that for any bounded function f : G0 → R,∣∣∣∣eτy1ϕ [f(C0)1 ({C0 ∩ Stripcy = CLEXT ⊔ CREXT}
)]
−∑

ℓ≥0
GL∈CL

GR∈CL
G1,...,Gℓ∈D

ρEXTL (GL)ρEXTR (GR)P(G1) · · ·P(Gℓ)f(G)

∣∣∣∣ ≤ C∥f∥∞e−c∥y∥2 , (4.10)
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where the sum holds over all GL ∈ CL, G
R ∈ CR, G1, . . . , Gk ∈ D satisfying the relation

XL
0 (G

L) +X(G1) + · · ·+X(Gk) +XR
x (G

R) = y,

and where we have written G = GL ◦G1 ◦ · · · ◦Gk ◦GR. Moreover, the measures ρEXTL and
ρEXTR have exponential tails, uniformly in the sets CLEXT, C

R
EXT satisfying the above-stated

assumptions: indeed, there exist c′, C ′ > 0 such that for any t > 0,

sup
CL

EXT,C
R
EXT

max
{
ρEXTL (X(GL) > t), ρEXTR (X(GR) > t)

}
< C ′e−c

′t.

Observe that in the latter formula, the event {C0 ∩ Stripcy = CLEXT ⊔ CREXT} implies that
y ∈ C0.

Remark 4.2.15. As done previously, for any y ∈ Y+
0 , we shall call

νEXTL (x) =
∑

GL∈Cδ
L,X

L
0 (GL)=x

ρEXTL (GL) and νEXTR (x) =
∑

GR∈Cδ
R,X

R
x (GR)=x

ρEXTR (GR)

We simply sketch the proof of the proposition, since it is a simple byproduct of the analysis
of [25]

Proof of Proposition 4.2.14. Apply the Ornstein–Zernike formula (4.7) to the function
g(C0) = f(C0)1

{
C0 ∩ Stripcy = CLEXT ⊔ CREXT

}
. Thus, one has that ρEXTL (resp. ρREXT) is

the restriction of ρL (resp. ρR) to pieces of clusters compatible with CLEXT (resp. CREXT).
The announced exponential decay is a byproduct of the exponential tails of ρL and ρR.

A non-trivial consequence of the latter proposition is the following estimate, appearing in [68,
Equation (2.19)].

Proposition 4.2.16 (Ornstein–Zernike decay uniform in the boundary conditions). There ex-
ists χ > 0 such that for any setsCLEXT, C

R
EXT satisfying the assumptions of Proposition 4.2.14,

1

χ

e−τn√
n
≤ ϕ

[
0

Stripn←→ (n, 0)

∣∣∣∣∣ C0 ∩
(
Z− × Z

)
= CLEXT and

C(n,0) ∩ ([n,+∞)× Z) = CREXT

]
≤ χe

−τn
√
n
. (4.11)

4.3 Scaling limit for the product measure

For our purposes, we need to develop an analog of the Ornstein–Zernike theory for r non-
intersecting clusters of FK-percolation. However, there is a supplementary difficulty, namely
that these non-intersecting clusters are not independent, beyond the obvious interaction
introduced by the conditioning. If we consider a product measure, we can readily extend
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the Ornstein–Zernike Theorem to r clusters sampled independently according to ϕ. This
is the goal of the present section. Even though it might seem a bit strange to consider the
conditioned product measure ϕ⊗r instead of the real conditioned random-cluster measure, we
are going to see in Section 4.4 that because of the conditioning, these two measures behave
similarly ”in the bulk”. This is a consequence of the spatial mixing property of the subcritical
random-cluster measure combined with an a priori repulsion estimate.

In what follows, ϕ⊗r will always denote the measure consisting in the product of r random-
cluster measures ϕ. Moreover, Ci will denote Ci(ωi). In particular, ifA is an event measurable
with respect to (C1, . . . , Cr), we have:

ϕ⊗r [A] = P [(C1(ω1), . . . , Cr(ωr)) ∈ A] ,

where ω1, . . . , ωr are independent percolation configurations sampled according to ϕ.

The main goal of this section is the following proposition:

Proposition 4.3.1. Recall the definition of the envelopes of a cluster Γ±(C) introduced in
Def 4.1.10, and their natural parametrization. Then there exists σ > 0 such that:

1√
n

(
Γ+(C1)(nt), . . . ,Γ+(Cr)(nt)

)
0≤t≤1

(d)−−−→
n→∞

(
σBW

(r)
t

)
0≤t≤1

,

where the percolation configuration is sampled under the measure ϕ⊗r
[
·
∣∣Con,NI], and the

convergence occurs in the space Cr([0, 1]) equipped with the topology of uniform convergence.
Moreover, almost surely, for any 1 ≤ i ≤ r,

1√
n
∥Γ+

i − Γ−
i ∥∞ −−−−−→n→+∞

0.

The strategy of the proof is the following: we start to state an analog of the Ornstein–Zernike
Theorem in the case of a product measure in Section 4.3.1, and use this coupling to compare
the skeletons of a system of r non-intersecting clusters with a system of r non-intersecting
directed random walks. However, there is a small difficulty while implementing this program:
indeed, conditioning on the event that the clusters do not intersect is not the same as
conditioning on the event that the skeletons of the clusters do not intersect. Moreover, while
the latter event is very well described in terms of the Ornstein–Zernike coupling, it is not a
priori clear how the former acts on the coupled walks. For that reason, we shall show first
that under the conditioning on NI ∩ Con, the clusters very soon get far from each other (this
is the goal of Subsection 4.3.2), and thanks to this input we will be able to prove that ”in the
bulk” of the system, the conditioning of non-intersection for the clusters or for the skeletons
of the clusters yield the same scaling limit. Thus we shall apply the invariance principle of
Theorem 4.5.3 to conclude in Section 4.3.3.
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4.3.1 Definition of the product measure and multidimensional version
of Ornstein–Zernike Theorem

We first state a r-dimensional version of Theorem 4.2.7 (the Ornstein–Zernike formula).
Indeed, if ω1, . . . , ωr are r independent configurations of law ϕ and f : Gr → R is a bounded
function, then it is an easy consequence of Theorem 4.2.7 that when n ∈ N is sufficiently
large,∣∣∣∣∣eτrnϕ⊗r [f(C1, . . . , Cr)1(ω1,...,ωr)∈Con

]
−
∑

GL
1 ∈CL
...

GL
r ∈CL

∑
GR

1 ∈CR
...

GR
r ∈CR

∑
k1≥0
...

kr≥0

∑
G1

1,...,G
k1
1 ∈D

· · ·
∑

G1
r,...,G

kr
r ∈D

( r∏
i=1

ρL(G
L
i )ρR(G

R
i )P(G1

i ) · · ·P(Gkii )

)
f(G1, . . . , Gr)

∣∣∣∣∣ ≤ Cr∥f∥∞e−cn. (4.12)

where we sum over all theGL1 , . . . , GLr ∈ CL, theGR1 , . . . , GRr ∈ CR, theG1
1, . . . , G

k1
1 , . . . , G

1
r ,

. . . , Gkrr ∈ D such that for any 1 ≤ i ≤ r,

XL
0 (G

L
i ) +X(Gi1) + · · ·+X(Gkii ) +XR

x (G
R
i ) = n(yi − xi).

The coupling stated in Theorem 4.2.9 is available in this context: we call it Φ⊗r
(0,x)→(n,y). It

simply consists in the product of the r couplings Φ(0,xj)→(n,yj) given by Theorem 4.2.9. Its
main feature is that for any bounded function of the skeletons of a system of r clusters,∣∣∣∣∣Φ⊗r

(0,x)→(n,y) [f (S1, . . . ,Sr)]−

∑
x1L,...,x

r
L

x1R,...,x
r
R

(
r∏
i=1

νL(x
i
L)νR(x

i
R)

)(
ERW

)⊗r [
f(x1L ◦ S1 ◦ x1R, . . . , xrL ◦ Sr ◦ xrR)1S∈HitxR−xL

] ∣∣∣∣∣
< Cr∥f∥∞e−cn, (4.13)

where we denoted by (ERW)⊗r the expectation under the measure of r independent directed
walks (S1, . . . , Sr) started from 0, and HitxR−xL the event that each Si ever hits xiR − xiL.
Note that the uniform Ornstein–Zernike coupling introduced in Proposition 4.2.14 also
holds in this context. Moreover, Lemma 4.2.11 is also true in its r-dimensional version, so
that it will be sufficient to study (ERW)⊗r when estimating probabilities for scaled random
walks.

Before working on the repulsion estimates as announced, we lower bound the probability of
non-intersection and connection in the product measure.

139



4.3. SCALING LIMIT FOR THE PRODUCT MEASURE

Lemma 4.3.2. Let x, y ∈W ∩ Zr. Then, there exists c > 0 such that

ϕ⊗r [NI,Con] ≥ cV (x)V (y)n−
r2

2 e−τrn, (4.14)

where V is the function introduced in Theorem 4.5.5.

Proof. We use the Ornstein–Zernike coupling given by (4.3.1): indeed, up to exponential
terms due to the coupling, and using the diamond confinement property,

ϕ⊗r [NI,Con]

= e−τrnΦ⊗r
(0,x)→(n,y) [(C1, . . . , Cr) ∈ NI]

≥ e−τrnΦ⊗r
(0,x)→(n,y)

 ⋂
1≤i ̸=j≤r

{D(Si) ∩ D(Sj) = ∅}


= e−τrn

∑
x1L,...,x

r
L

x1R,...,x
r
R

(
r∏
i=1

νL(x
i
L)νR(x

i
R)

)

× c
(
PRW

)⊗r  ⋂
1≤i ̸=j≤r

{D
(
xiL ◦ Si ◦ xiR

)
∩ D

(
xjL ◦ S

j ◦ xjR
)
= ∅},Hit(n,y−x)

 .
Hence the result boils down to lower bound the probability of non-intersection and connection
for r independent decorated directed random walks. This is precisely the content of
Lemma 4.5.16. By finiteness of the measures νL, νR, we conclude that

ϕ⊗r [NI,Con] ≥ cV (x)V (y)n−
r2

2 e−τrn.

Observe that the latter bound reads as follows on the coupling measure:

Φ⊗r
(0,x)→(n,y) [NI] ≥ cV (x)V (y)n−

r2

2 . (4.15)

Thanks to Proposition 4.2.14, the same analysis holds for deriving the analog of the latter
result in a strip with boundary conditions.

Corollary 4.3.3. Let x, y ∈ W . Let CLi,EXT ∋ xi, CRi,EXT ∋ yi, and assume that the family

C =
(
CLi,EXT, C

R
i,EXT

)
1≤i≤r

satisfies the assumptions of the uniform Ornstein–Zernike
coupling given by Proposition 4.2.14. Then, there exists a uniform constant χ > 0 such that

ϕ⊗r

[
Con,NI

∣∣∣∣∣C(0,xi) ∩ (Z− × Z) = CLi,EXT,

C(n,yi) ∩ ([n,+∞]× Z) = CRi,EXT, ∀1 ≤ i ≤ r

]
≥ c

χ
V (x)V (y)n−

r2

2 e−τrn.
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4.3.2 Edge repulsion

The goal of this section is to prove Lemma 4.13 which we refer to as the ”edge repulsion”
lemma for the independent system. Beforehand we introduce the important notion of
synchronized skeleton of a system of long clusters.

Let C = (C1, . . . , Cr) be sampled according to Φ⊗r
(0,x)→(n,y). We say that k ∈ N is a

synchronization time for C if there exists (s1k, . . . , s
r
k) ∈ Zr such that for any 1 ≤ i ≤ r, one

has (k, sik) ∈ Si. In other words, k is a synchronization time for C if and only if each one of
the r skeletons of C contains a point of x-coordinate k. We define the set of synchronization
times of C by

ST(C) = {0 ≤ k1 < k2 < · · · < kl ≤ n}.

The synchronized skeleton of C, called Š is now defined to be the process defined on ST(C),
taking its values in Zr, such that for any k ∈ ST(C),

Šk = (S1(k), . . . ,Sr(k)).

As previously, we extend this process as a function of R+ to R by linear interpolation. Let us
observe an important property of this process (which the reason of its introduction) before
turning to Lemma 4.3.7.

Claim 4.3.4. Under Φ⊗r
(0,x)→(n,y),

{(C1, . . . , Cr) ∈ NI} ⊆
{(
Š(C1), . . . , Š(Cr))

)
∈ W[0,n]

}
. (4.16)

Proof. This is an immediate consequence of the Intermediate Value Theorem.

Remark 4.3.5. Observe that this inclusion would not be true when replacing Š by S (see
Figure 4.3).

Moreover, due to the exponential tails of the increments of S, it is clear that the increments
of Š also have exponential tails. Thus, Š falls into the class of synchronized directed random
walks, studied in Section 4.5.1.

Next lemma indicates that in a time less than n− o(n) the clusters have been far away from
at least nε at least once. A convenient notion for stating this result is the gap of a point
x ∈W .

Definition 4.3.6 (Gap of a point). Let x ∈W . We define its gap to be the following quantity:

Gap(x) = min
1≤i≤r−1

(xi+1 − xi).

Observe that due to the fact that x lies in W , Gap(x) is always a positive quantity.

We are ready to state the edge repulsion result for the independent system.
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Figure 4.3: Illustration of the necessity of considering the process of synchronized renewals:
here, the red clusters do not intersect while their associated skeletons do intersect.

Lemma 4.3.7 (Edge repulsion for the independent system). There exists an ε > 0 such that
the following holds. Let T1 and T2 be the following random variables:

T1 = inf
{
k ≥ 0,Gap(Šk) > nε

}
.

and
T2 = sup

{
k ≥ 0,Gap(Šk) > nε

}
Then, there exist C, c > 0 such that when n ≥ 0 is large enough,

Φ⊗r
(0,x)→(n,y)

[{
T1 > n1−ε

}
∪
{
T2 < n− n1−ε

}
|NI
]
<

1

c
exp(−cnε). (4.17)

Proof. We prove that Φ⊗r
(0,x)→(n,y)

[
T1 > n1−ε|NI

]
< exp(−cnε). By time reversal and a

basic union bound, it will be sufficient to conclude. We roughly upper bound:

Φ⊗r
(0,x)→(n,y)

[
T1 > n1−ε|NI

]
≤

Φ⊗r
(0,x)→(n,y)

[
T1 > n1−ε

]
Φ⊗r
(0,x)→(n,y) [NI]

. (4.18)

We are going to separately bound the numerator and the denominator. We start by the
numerator of (4.14). Since T1 is measurable with respect to the synchronized skeleton of
C (which itself is measurable with respect to S), we use the fact that the law of S under
Φ⊗r
(0,x)→(n,y) is that of a system of directed random bridges to write - up to an exponential

correction due to the coupling:

Φ⊗r
(0,x)→(n,y)

[
T1 > n1−ε

]
= PRW

(0,x)

[
T1(Š) > n1−ε|Hit(n,y)

]
.
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We then are exactly in the context of entropic repulsion for synchronized directed random
bridges, and we refer to Corollary 4.5.10, which asserts that the latter probability is upper
bounded by c−1 exp(−cnε) for some constant c > 0.

By (4.11), we have a polynomial lower bound on the denominator. Hence, up to slightly
changing the value of c, we obtained

Φ⊗r
(0,x)→(n,y)

[
T1 > n1−ε|NI

]
<

1

c
exp(−cnε),

which achieves the proof.

By the synchronized renewal time property, for any 1 ≤ i ≤ r, the cluster Ci intersects
the line {T1} × Z (resp. {T2} × Z) at a unique vertex of Z2, whose y-coordinate shall be
called Xi (resp. Yi). Thus, X and Y are elements of Zr satisfying X1 < · · · < Xr (resp.
Y1 < · · · < Yr). Introduce the following edge-regularity condition:

Definition 4.3.8 (Edge-regularity property). Let ω ∈ Con∩NI be a percolation configuration.
We call ω edge-regular an abbreviate this event in EdgeReg if it satisfies the following
properties:

(i) T1 < n1−ε and T2 > n− n1−ε,

(ii) ∥X ∥2 ≤ n1/2−ε/4 and ∥Y ∥2 ≤ n1/2−ε/4

where ε > 0 is given by Lemma 4.3.7.

We then prove that a percolation configuration sampled under Φ⊗r
(0,x)→(n,y) [ · |NI] is typically

edge-regular.

Lemma 4.3.9. There exists a small constant c > 0 such that

Φ⊗r
(0,x)→(n,y) [EdgeReg

c|NI] < 1

c
exp(−cn

ε
2 ).

Proof. Let us work conditionally on the event T1 < 2n1−ε, as it has been proved to occur
with exponentially large probability in Lemma 4.3.7. As previously, we use the rough upper
bound

Φ⊗r
(0,x)→(n,y)

[
∥X ∥2 > n1/2−ε/4|NI

]
= Φ⊗r

(0,x)→(n,y)

[
∥S(T1)∥2 > n1/2−ε/4|NI

]
=

Φ⊗r
(0,x)→(n,y)

[
∥S(T1)∥2 > n1/2−ε/4

]
Φ⊗r
(0,x)→(n,y) [NI]

.

As previously we use the lower bound (4.11) to argue that the denominator is at least
polynomial, while we are going to produce a stretched-exponential upper bound on the
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numerator. First, observe that

Φ⊗r
(0,x)→(n,y)

[
∥X ∥2 > n1/2−ε/4

]
= PRW

(0,x)

[
∥S(T1)∥2 > n1/2−ε/4|Hit(n,y)

]
≤

PRW
(0,x)

[
∥S(T1)∥2 > n1/2−ε/4

]
PRW
(0,x)

[
Hit(n,y)

] .

By Theorem 4.5.5, the denominator is at least polynomial. Now observe that the classical
theory of large deviations for random walks allows us to produce a stretched-exponential
upper bound on the numerator (remember that we work conditionally on T1 < n1−ε): there
exists c > 0 such that

PRW
(0,x)

[
∥S(T1)∥2 > n

1−ε
2

+ε/4
]
≤ exp(−cn

ε
2 ).

This proves, up to some small change in the constant c, that

Φ⊗r
(0,x)→(n,y)

[
∥X ∥2 > n1/2−ε/4|T1 ≤ n1−ε,NI

]
≤ exp(−cn

ε
2 ).

We conclude writing (the factor 2 comes from the terms in T2 and Y that are handled by
symmetry):

Φ⊗r
(0,x)→(n,y) [EdgeReg

c|NI] ≤

2
(
2Φ⊗r

(0,x)→(n,y)

[
T1 > n1−ε|NI

]
+Φ⊗r

(0,x)→(n,y)

[
∥X ∥2 > n1/2−ε/4|T1 ≤ n1−ε,NI

])
.

Thus,
Φ⊗r
(0,x)→(n,y) [EdgeReg

c|NI] ≤ 1

c
exp(−cn

ε
2 ).

4.3.3 Convergence towards the Brownian watermelon

As we shall explain here, the edge repulsion stated in Lemma 4.3.7 is the main ingredient
needed to show that the rescaled system, sampled under the product measure and conditioned
both on the mutual avoidance of the clusters and on the connection event converges in
distribution towards the Brownian watermelon.

The technique of proof will be used several times through the paper. Basically, it consists in
splitting the system of clusters sampled under the measure ϕ⊗r[·|Con,NI] in two different
parts (for the sake of exposition, we explain the splitting on the first half of the cluster ”near
the starting point” - of course, one has to do the symmetric splitting ”near the arrival point”).
The first part will be given by the random time T1 introduced in Lemma 4.3.7. At this time, the
clusters are far from each other, sufficiently far for the conditioning on the non-intersection of
the clusters to be asymptotically equivalent to the conditioning on the non-intersection of the
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skeletons of the clusters. This allows us to implement the Ornstein–Zernike coupling given
by (4.3.1) for the section of the clusters which is after T1 (taking into account the boundary
conditions enforced by the configuration outside of the strip thank to Proposition 4.2.14).
We conclude by applying the invariance principle for directed random walks derived in
Section 4.5.3.

Due to the fact that we work between the random times T1 and T2 we need a technical input
that allows us to extend the convergence as a process of the interval (0, 1) to the convergence
as a process defined on [0, 1].

Lemma 4.3.10. Let Gn be random sequence of functions of the space C([0, 1],Rr) and G be
a continuous stochastic process of C([0, 1],Rr). Assume that:

(i) For any δ > 0, for any bounded and continuous function f : C([δ, 1− δ],Rr)→ R,

E
[
f(Gn [δ,1−δ])

]
−−−→
n→∞

E
[
f(G [δ,1−δ])

]
,

(ii) For all ε > 0

lim
t→0

sup
n≥0

P
[∣∣Gn(t)−Gn(0)∣∣ > ε

]
= 0

and
lim
t→1

sup
n≥0

P
[∣∣Gn(t)−Gn(1)∣∣ > ε

]
= 0

Then, Gn converges in distribution towards G in the space C([0, 1],Rr).

Sketch of proof of Lemma 4.3.10. The proof of Lemma 4.3.10 relies on very classical argu-
ments and we refer to [14] for details. Observe that hypothesis (i) together with the fact that
the family [δ, 1− δ] is a compact exhaustion of (0, 1) yields the convergence of Gn towards
G as processes from (0, 1) to Rr. The equicontinuity of Gn at 0 and 1 (hypothesis (ii)) then
yields the desired convergence by the Arzelà-Ascoli Theorem.

This technical tool in hand, we can prove the main result of this section.

Proof of Proposition 4.3.1. In what follows, introduce the scaled version of S, for any
0 ≤ t ≤ 1:

Sn(t) = 1√
n
S(nt).

We are going to implement the strategy given by Lemma 4.3.10 to show that under the measure
Φ⊗r
(0,x)→(n,y)[ · |NI], the scaled system of skeletons Sn converges towards the Brownian

watermelon as random functions of C([0, 1],Rr).
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We start with the proof of point (i) (the crucial part of the proof). Fix δ > 0. Fix
f δ : C([δ, 1− δ],Rr)→ R, continuous and bounded. Our goal is to show that there exists
σ > 0, independent of δ, such that

Φ⊗r
(0,x)→(n,y)

[
f δ(Sn [δ,1−δ])|NI

]
−−−→
n→∞

E
[
f δ(σBWr

[δ,1−δ])
]
. (4.19)

For sake of notational simplicity, the restrictions of the functions Sn and BW(r) to the interval
[δ, 1− δ] will not be made explicit anymore.

We first observe that, by Lemma 4.3.9, and using the fact that f δ is bounded,

Φ⊗r
(0,x)→(n,y)

[
f δ(Sn)|NI

]
= (1 + o(1))Φ⊗r

(0,x)→(n,y)

[
f δ(Sn)|NI,EdgeReg

]
.

Hence, it is sufficient to establish the convergence (4.15) for the measure conditioned on the
configuration to be edge-regular. We recall that under this conditioning, there exist T1 and
T2 such that:

(i) T1 < n1−ε, T2 > n− n1−ε and T1 and T2 are synchronized renewal times of C.

(ii) Gap(X ),Gap(Y ) > nε.

(iii) ∥X ∥2 , ∥Y ∥2 < n1/2−ε/4.

We chose n large enough so that nδ > T1 and n(1− δ) < T2 1.

We call Strip := [T1, T2]×Z. We are going to use an exploration argument, by conditioning
on the portion of the clusters C that lies outside of Strip. To that end, for an edge-regular
percolation configuration ω ∈ NI ∩ Con, introduce the following sets of vertices:

EXTi = (Ci ∪ ∂extCi) ∩ Stripc and EXT =
⋃
i

EXTi.

Now observe that summing over all the possible exterior edge-regular configurations yields

Φ⊗r
(0,x)→(n,y)

[
f δ(Sn)|NI,EdgeReg

]
=∑

Ext

Φ⊗r
(T1,X )→(T2,Y )

[
f δ(Sn)|NI,EXT = Ext

]
× Φ⊗r

(0,x)→(n,y) [EXT = Ext|NI,EdgeReg] .

We would like to conclude using Theorem 4.5.3. For that, we need to understand how
the measure changes when switching the conditioning from NI to NonIntDiam(S) (this is

1This is the only place where we use the fact that our functions are defined on [δ, 1− δ] and it is the reason
why we follow the strategy given by Lemma 4.3.10 instead of directly working on [0, 1].
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the event appearing in the statement of Theorem 4.5.3 that the decorated skeletons do not
intersect).

Fix such an admissible edge-regular Ext. We use the following important input from
Section 4.5.3. By edge-regularity of Ext, usual properties of the coupling and Lemma 4.5.18
ensure that

Φ⊗r
(T1,X )→(T2,Y )

[
inf

t∈[T1,T2]
Gap(S(t)) ≤ (log n)3|NonIntDiam(S),EXT = Ext

]
−−−→
n→∞

0.

Now under the complementary event, the diamond confinement property given by the
Ornstein–Zernike coupling ensures that (∆ here means the symmetric difference) the event
NonIntDiam(S)∆{C ∈ NI} can occur only if one of the diamonds appearing in the diamonds
decompositions of the Ci has a volume larger than (log3 n)2. This event has been shown in
Corollary 4.2.13 to occur with probability going to 0. Thus, we proved that:

Φ⊗r
(T1,X )→(T2,Y ) [NonIntDiam(S)∆ {C ∈ NI} |EXT = Ext] −−−→

n→∞
0.

It is an easy consequence that:∣∣∣Φ⊗r
(T1,X )→(T2,Y )

[
f δ(Sn)|NI,EXT = Ext

]
−

Φ⊗r
(T1,X )→(T2,Y )

[
f δ(Sn)|NonIntDiam(S),EXT = Ext

] ∣∣∣ −−−→
n→∞

0.

The right-hand summand of the latter formula is measurable with respect to S, except the
conditioning on EXT = Ext. Thanks to the uniform Ornstein–Zernike formula stated in
Proposition 4.2.16 and Lemma 4.2.11 to get rid of the boundary conditions, we obtain that -
uniformly on Ext being edge-regular:∣∣∣Φ⊗r

(T1,X )→(T2,Y )

[
f δ(Sn)|NonIntDiam(S),EXT = Ext

]
−(

PRW
(T1,X )

)⊗r [
f δ(S)

∣∣NonIntDiam(S),Hit(T2,Y )

] ∣∣∣ −−−→
n→∞

0

The main input of Section 4.5, namely Theorem 4.5.3 then allows us to conclude that

Φ⊗r
(T1,X )→(T2,Y )

[
f δ(Sn)|NonIntDiam(S),EXT = Ext

]
−−−→
n→∞

E
[
f δ(σBW(r))

]
,

for some σ > 0 that depends on the distribution P in (4.2.14), but of course not on δ. This
concludes the proof of point (i) of Lemma 4.3.10.

The point (ii) - the equicontinuity of the family Sn at 0 and 1 - is an easy consequence of
classical large deviations estimates combined with the arguments above.
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By Lemma 4.3.10, we thus proved that Sn converges in distribution towards BW(r) when
sampled under the distribution Φ⊗r

(0,x)→(n,y)

[
f δ(Sn)|S ∈ W[T1,T2],EXT = Ext

]
. Now, ob-

serve that the diamond confinement property and the volume estimate stated in Lemma 4.2.13
yield that

Φ⊗r
(0,x)→(n,y)

[
sup

0≤t≤n

∣∣Γ±(t)− S(t)
∣∣ > log3 n

]
≤ exp(−c log2 n).

This concludes the proof, by the usual observation that this decay is faster than any
polynomial.

4.4 Brownian watermelon asymptotics for the random-
cluster measure

Now that the convergence of the rescaled clusters towards the Brownian watermelon is
established in the case of the product measure, the goal of the following section is to transfer
this convergence to the rescaled clusters sampled under the ”real” random-cluster measure,
and thus to achieve our journey towards Theorems 4.1.6 and 4.1.11. The strategy looks
similar to the precedent section: indeed, we shall first prove an edge repulsion lemma
in Section 4.4.1. Then we shall prove in Section 4.4.2 that the clusters remain far away
from each other in the bulk. This will finally allow us to conclude that in the bulk, the
conditioned random-cluster measure is close to the conditioned product measure thanks to a
mixing argument, and to import the results of the precedent section to conclude the proofs
in Section 4.4.3. The main difficulty and the reason why we needed to introduce and study
the measure ϕ⊗r is that a coupling such as Φ⊗r

x→y is not available in this setting. Hence, the
random diamond decomposition and its associated skeleton given by the coupling Φ⊗r

x→y do
not exist anymore. We then work with the maximal diamond decomposition and maximal
skeletons of the clusters (see remark 4.2.4). We draw the attention of the reader on the fact
that this maximal skeleton does not behave like a process with independent increments as it
was the case in Section 4.3.

Introduce the following notation: if E is a set of edges of Z2 and η, ω are two percolation
configurations, we set

{ω E
= η} = {∀e ∈ E , ω(e) = η(e)}.

The first easy comparison between the infinite volume and the product measures is given by
the following lemma:

Lemma 4.4.1. Let E be an arbitrary subset of E(Z2) and η an arbitrary percolation
configuration on Z2. Then,

ϕ
[
Con,NI|ω E

= η
]
≥ ϕ⊗r

[
Con,NI|ω1

E
= . . .

E
= ωr

E
= η

]
. (4.20)
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Proof. It is a simple consequence of the FKG inequality applied to ϕ[·|ω E
= η], which is a

random-cluster measure on the graph Z2 \ E with some boundary conditions imposed by the
configuration η. If C is a connected set of edges of Z2, introduce its edge exterior boundary
by:

∂extC =
{
{x, y} ∈ E(Z2) ∩ Cc, x is the endpoint of an edge of C

}
.

Then, we write, summing over all the potential realizations of C1, . . . , Cr such that Con ∩ NI
occurs:

ϕ
[
NI,Con|ω E

= η
]
=

∑
C1,...,Cr

ϕ
[ r⋂
i=1

{Ci = Ci}|ω
E
= η

]
=

∑
C1,...,Cr

ϕ
[ r⋂
i=1

{Ci is open , ∂extCi is closed}|ω E
= η

]
=

∑
C1,...,Cr

ϕ
[ r⋂
i=1

{∂extCi is closed}|ω E
= η

] r∏
i=1

ϕ0Ci

[
Ci is open | ω E∩Ci= η

]
≥

∑
C1,...,Cr

r∏
i=1

ϕ
[
∂extCi is closed |ω E

= η
]
ϕCi

[
Ci is open |ω E∩Ci= η

]
=

∑
C1,...,Cr

r∏
i=1

ϕ
[
Ci = Ci|ω

E
= η

]
= ϕ⊗r

[
NI,Con|ω E

= η
]
,

where the inequality comes from the positive association property (FKG) of the measure
ϕ
[
· |ω E

= η
]
.

Remark 4.4.2. The lemma above together with Lemma 4.3.2 immediately yields that for any
x, y ∈W ∩ Zr,

ϕ [NI,Con] ≥ cV (x)V (y)n−
r2

2 e−τrn. (4.21)

This will be of particular interest later - and is the first half of the proof of Theorem 4.1.6.

While the latter bound is optimal (up to a constant), we also import a rough non-optimal
upper bound.

Lemma 4.4.3. Let x, y ∈W ∩ Z2. Then,

ϕ [Con,NI] ≤ e−τrn.
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Before turning to the proof of Lemma 4.4.3, we introduce a useful notation for the rest
of the paper. When x, y ∈ W ∩ Zr, if 1 ≤ i ≤ r we write (Con,NI)̸=i for the event that
C1, . . . , Ci−1, Ci+1, . . . , Cr realize the connection event and are non-intersecting. Observe
that whenever 1 ≤ i ≤ r, (Con,NI) ⊂ (Con,NI) ̸=i, while the opposite inclusion is obviously
not true.

Proof of Lemma 4.4.3. We proceed by induction on r. For r = 1, the statement to prove is

ϕ [(0, x)↔ (n, y)] ≤ e−τrn,

which is the consequence of a well-known subbaditivity argument.

If the statement is established with r clusters, let x, y ∈ Zr+1. Then, observe that if Con,NI
occurs, then (Con,NI) ̸=r+1 has to occur. Summing over all the potential realizations of
C1, . . . , Cr under Con,NI, we get:

ϕ [Con,NI] =
∑

C1,...,Cr

ϕ
[
(0, xr+1)

(C1⊔···⊔Cr)c←→ (n, yr+1)|Ci = Ci, ∀1 ≤ i ≤ r
]

× ϕ [Ci = Ci,∀1 ≤ i ≤ r]

=
∑

C1,...,Cr

ϕ0(C1⊔···⊔Cr)c
[(0, xr+1)↔ (n, yr+1)]ϕ [Ci = Ci, ∀1 ≤ i ≤ r]

≤ ϕ [(0, xr+1)↔ (n, yr+1)]ϕ [(NI,Con)̸=r+1]

≤ e−τnϕ [(NI,Con) ̸=r+1] ,

where we used (SMP) in the second line, (CBC) in the third line, and the case r = 1 in the
last line. The statement follows by the induction hypothesis.

We next state another consequence of these two bounds, observing that they allow us to derive
a diamond confinement property for the infinite volume measure conditioned on Con ∩ NI,
the exact analog of Corollary 4.2.13 for the conditioned measure. We formulate it for a rather
particular class of boundary conditions, in order to be able to apply it later: however the
reader should think about the measure ϕ on the strip Stripn with boundary conditions given
by the trace of a subcritical cluster outside of the strip. We recall that Dmax(C) denotes the
maximal diamond decomposition of the cluster C, and introduce the following events:

BigDiami = { max
D⊂Dmax(Ci)
D diamond

Vol(D) ≥ log2 n} and BigDiam =

r⋃
i=1

BigDiami.

Lemma 4.4.4 (Diamond confinement). There exists a constant c > 0 such that the following
occurs. Let Ext be a finite set of edges such that Ext ∩ E(Stripn) = ∅. Then for any n large
enough,

ϕ0Extc
[
BigDiam

∣∣Con,NI] ≤ exp
(
−c (log n)2

)
.
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Proof. We write

ϕ0Extc
[
BigDiam

∣∣Con,NI] ≤ r∑
i=1

ϕ0Extc
[
BigDiami

∣∣Con,NI].
We fix an i ∈ {1, . . . , r}. Now we shall focus on the numerator of the latter probability,
namely on estimating the quantity ϕ0Extc

[
BigDiami,Con,NI

]
. Summing over all the potential

clusters C1, . . . , Ci−1, Ci+1, . . . , Cr under Con,NI,

ϕ0Extc [BigDiami,Con,NI]

=
∑

C1,...,Ci−1,Ci+1,...Cr

ϕ0Extc [BigDiami,Con,NI|Cj = Cj ]ϕ
0
Extc [Cj = Cj ], (4.22)

where the event in the conditioning is shorthand for Cj = Cj for all 1 ≤ j ̸= i ≤ r.
Fix such a system of clusters C1, . . . , Ci−1, Ci+1, . . . , Cr, and call by convenience Ẽxt =

Ext ∪
(⋃

1≤j ̸=i≤r Cj ∪ ∂extCj
)
. We then observe that - thanks to (SMP),

ϕ0Extc
[
BigDiami,Con,NI

∣∣Cj = Cj

]
= ϕ0

Ẽxt
c

[
BigDiami, (n, yi) ∈ Ci

]
.

Moreover, since the events {(n, yi) ∈ Ci} and BigDiami are increasing, we obtain:

ϕ0
Ẽxt

c

[
BigDiami, (n, yi) ∈ Ci

]
≤ ϕ

[
BigDiami, (n, yi) ∈ Ci

]
But we are now in the setting of Corollary 4.2.13, which ensures that

ϕ
[
BigDiami, (n, yi) ∈ Ci

]
≤ e−τnn−c logn.

Indeed, the diamonds appearing in the maximal diamond decomposition are always contained
in the ones appearing in the diamond decomposition given by the Ornstein–Zernike coupling.
Coming back to (4.4), we proved that

ϕ0Extc
[
BigDiami,Con,NI

]
≤ e−τn−c log

2 nϕ0Extc [(Con,NI) ̸=i]

Using the rough upper bound given by Lemma 4.4.3, we obtain:

ϕ0Ext

[
BigDiami,Con,NI

]
≤ e−(τrn+c log2 n).

Now, thanks to Remark 4.4.2 and the uniform Ornstein–Zernike decay (4.9), we bound the
denominator:

ϕ0Extc [Con,NI] ≥ cn−
r2

2 e−τrn.

Combining the two bounds above, we find

ϕ0Extc
[
BigDiami

∣∣Con,NI] ≤ 1
cn

r2

2 exp(−c(log n)2).

Applying the union bound yields the result for an amended value of c.

151



4.4. BROWNIAN WATERMELON ASYMPTOTICS FOR THE RANDOM-CLUSTER
MEASURE

4.4.1 Edge repulsion

The goal of this section is to prove the equivalent of Lemma 4.3.7 for the measureϕ[ · |Con,NI].
We need an alternative definition of the random times T1 and T2, since S is not available
anymore. Recall the definition of the upper and lower interfaces of a cluster Γ±(t).

Definition 4.4.5. Fix ε > 0. We define the two following random variables.

T ′
1 = min

{
t ≥ 0, min

∗,⋆∈±
min

1≤i<j≤r

∣∣Γ⋆i (t)− Γ∗
j (t)
∣∣ > nε

}
and

T ′
2 = max

{
t ≥ 0, min

∗,⋆∈±
min

1≤i<j≤r

∣∣Γ⋆i (t)− Γ∗
j (t)
∣∣ > nε

}
.

The analogous of Lemma 4.3.7 is the following:

Lemma 4.4.6 (Edge repulsion). There exists ε > 0 and c > 0 such that for any n large
enough,

ϕ
[{
T ′
1 > n1−ε

}
∪
{
T ′
2 < n− n1−ε

}
|Con,NI

]
< 2 exp

(
−cn1−3ε

)
. (4.23)

The value of ε > 0 given by Lemma 4.4.6 will be fixed in the rest of the paper.

Proof. Let ε > 0, its value will be determined at the end of the proof. By symmetry, we
focus on proving the following bound

ϕ
[
T ′
1 > n1−ε|Con,NI

]
≤ exp(−cn1−3ε).

As in the proof of Lemma 4.3.7, we will conclude by time reversal and an easy union bound.
For 2 ≤ i ≤ r, we define the event MLCPi (meaning ”many left-close points”) by

MLCPi = {#{k ∈ {0, . . . , n1−ε}, |Γ−
i (k)− Γ+

i−1(k)| < nε} ≥ 1

r
n1−ε}.

The reason for the introduction of this event is the following inclusion (that is a simple
consequence of the pigeonhole principle):

{T ′
1 > n1−ε} ⊂

r⋃
i=2

MLCPi.

Thus, by union bound

ϕ
[
T ′
1 > n1−ε|Con,NI

]
≤

r∑
i=2

ϕ [MLCPi|Con,NI] .
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Fix some i ∈ {2, . . . , r}. We upper bound ϕ [MLCPi|Con,NI] by separately bounding the
numerator and the denominator of this fraction. We start with the numerator, and we write,
conditioning over all the possible clusters C1, . . . , Ci−1, Ci+1, . . . , Cr under Con,NI:

ϕ [MLCPi,Con,NI] =
∑

C1,...,Ci−1,Ci+1,...,Cr

ϕ [MLCPi, (n, yi) ∈ Ci|Cj = Cj ]ϕ [Cj = Cj ] ,

(4.24)
where the event in the conditioning is shorthand for Cj = Cj for all 1 ≤ j ̸= i ≤ r. Let us fix
C1, . . . , Ci−1, Ci+1, . . . , Cr that can appear in the sum (4.19). As in the precedent proof,
we define the following set of edges

Ẽxt =
⋃

1≤j ̸=i≤r
(Cj ∪ ∂extCj).

Following the previous computation and using the spatial Markov property (SMP), we
observe that

ϕ [MLCPi, (n, yi) ∈ Ci|Cj = Cj ] = ϕ0
Ẽxt

c [MLCPi, (n, yi) ∈ Ci] ,

where

ϕ0
Ẽxt

c [MLCPi, (n, yi) ∈ Ci] =

ϕ0
Ẽxt

c

[
(n, yi) ∈ Ci,#{k ∈ {0, . . . , n1−ε}, |Γ−

i (k)− Γ+(Ci−1)(k)| < nε} ≥ 1
rn

1−ε] .
The event appearing on the right-hand side of the latter equation is increasing (the connection
event is always increasing, and adding edges to the configuration can only push Γ−

i down,
rendering it closer to Γ+(Ci−1)). Thus, by (CBC), we obtain:

ϕ [MLCPi, (n, yi) ∈ Ci|Cj = Cj ] ≤

ϕ

[
(n, yi) ∈ Ci,#{k ∈ {0, . . . , n1−ε}, |Γ−

i (k)− Γ+(Ci−1)(k)| < nε} ≥ 1

r
n1−ε

]
.

(4.25)

We are now in the framework of the classical one-cluster Ornstein–Zernike theory - and
we are going to conclude using Lemma 4.5.20. Indeed, observe that if k ∈ {0, . . . , n1−ε}
satisfies |Γ−

i (k)− Γ+(Ci−1)(k)| < nε, then one can invoke Lemma 4.4.4 applied to both Ci
and to Ci−1 to argue that with very large probability, there exists some time tk (measurable
with respect to Ci: one can choose the next renewal after k) such that tk is a renewal time for
Ci and |S(tk)− Γ+(Ci−1)(tk)| < 2nε. The map k 7→ tk is not one-to-one but still due to
Lemma 4.4.4 is can be at most log2 n-to-1 with high probability. Thus we get that for some
α < 1,

ϕ

[
(n, yi) ∈ Ci,#{k ∈ {0, . . . , n1−ε}, |Γ−

i (k)− Γ+(Ci−1)(k)| < nε} ≥ 1

r
n1−ε

]
≤ e−τnΦ(0,xi)↔(n,yi)

[
#{0 ≤ k ≤ n1−ε, |Si(k)− Γ+(Ci−1)(k)| < 2nε} ≥ α

r
n1−ε

]
,
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In words, the trajectory of S stays confined during a large amount of time close to the function
Γ+(Ci−1). Since Γ+(Ci−1) is the graph of a fixed function we can apply Lemma 4.5.20 2 to
argue that

Φ(0,xi)↔(n,yi)

[
#{k ∈ {0, . . . , n1−ε}, |Si(k)− Γ+(Ci−1)(k)| < nε} ≥ 1

r
n1−ε

]
≤ exp(−cn1−3ε),

provided that ε > 0 is small enough. Coming back to (4.19), we proved that

ϕ
[
MLCPi(r),Con,NI

]
≤ exp(−cn1−3ε − τn)ϕ [(Con,NI)̸=i] .

Finally using the rough bound given by Lemma 4.4.3 we proved that

ϕ
[
T ′
1 > n1−ε,Con,NI

]
≤ exp(−(τrn+ cn1−3ε)).

We conclude by using the lower bound on ϕ [Con,NI] given by (4.17). We obtain

ϕ
[
T ′
1 > n1−ε|Con,NI

]
≤ n

r2

2 exp(−cn1−3ε),

which yields the result, up to slightly changing the value of the constant c.

Observe that, by their definition, T ′
1 and T ′

2 are not necessarily synchronization times. We
chose to define them as such so as to obtain an increasing event in (4.4.1); otherwise the
proof of Lemma 4.4.6 would be more complicated. Thus let us define the actual random
variables T1 and T2 by the following:

T1 = min{k ≥ T ′
1, k is a synchronization time for Smax} and

T2 = max{k ≤ T ′
2, k is a synchronization time for Smax}.

Similarly to Section 4.3.2, Lemma 4.4.6 will be used to produce edge-regular configurations
with large probability. We recall and modify slightly the notion of edge-regular configurations:
a percolation configuration ω ∈ Con,NI is called edge-regular (also written ω ∈ EdgeReg)
if the following set of conditions is satisfied:

(i) T1 < n1−ε and T2 > n− n1−ε.

(ii) ∥X ∥2 ≤ n1/2−ε/4 and ∥Y ∥2 ≤ n1/2−ε/4.

(iii) Gap(X ) > 1
2n

ε and Gap(Y ) > 1
2n

ε.

2Lemma 4.5.20 is stated for unconditioned random walks, but as usual due to the Local Limit Theorem, being
a bridge has a polynomial probability which is always beaten by the quantity exp(−cn1−3ε)
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Then typical configurations are edge-regular under the conditioning on Con,NI.

Lemma 4.4.7. There exists a constant c > 0 such that

ϕ [EdgeRegc|Con,NI] ≤ 1

c
exp(−cnε/2).

We only briefly sketch the proof since it is very similar to the one of Lemma 4.3.9.

Proof. By Lemma 4.4.4, it is easy to see that:

ϕ
[
max{|T1 − T ′

1|, |T2 − T ′
2|} > (log n)3|Con,NI

]
≤ e−c(logn)

2
(4.26)

for some small constant c > 0. Indeed, one can use Lemma 4.4.4 together with the fact that
being a cone-point is a decreasing event. This fact established, the proof is essentially the
same as the proof of Lemma 4.3.9: in a time smaller than (log n)2, the clusters cannot move
to a polynomial distance of their starting point by a basic large deviations estimate.

4.4.2 Global repulsion

In this section, we work under the measure ϕ [ · |Con,NI], and we want to prove that between
a time o(n) and n− o(n), the minimal gap between the clusters diverges with n. The event
that we are going to estimate is the following ”global repulsion” event:

GlobRep :={T1 < n1−ε} ∩ {T2 > n− n1−ε} ∩
{

min
1<i≤r
t∈[T1,T2]

∣∣Γ−
i (t)− Γ+

i−1(t)
∣∣ > (log n)2

}
.

The goal of this section is to prove the following statement.

Proposition 4.4.8 (Global repulsion estimate). There exists β > 0, depending only on r, and
c > 0 such that

ϕ [GlobRep|Con,NI] ≥ 1− cn−β. (4.27)

This lemma will be the main ingredient for the proofs of Theorems 4.1.6 and 4.1.11. The rest
of the section is dedicated to the proof of Proposition 4.4.8. We first use Lemma 4.4.7 to
write:

ϕ [GlobRepc|NI,Con] ≤ ϕ[EdgeRegc|NI,Con] + ϕ[GlobRepc|NI,Con,EdgeReg]
≤ 1

c exp
(
− cnε/2

)
+ ϕ[GlobRepc|NI,Con,EdgeReg].

We will focus on bounding the second term in the right-hand side of the above. We will do
so by conditioning on T1, T2 and the shape of the clusters before T1 and after T2.
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T1 T2

Figure 4.4: The region Strip is the vertical strip between T1 and T2; EXT is the configuration
outside of this strip. The events NI, Con and Diam are realised by the three traversing grey
clusters. Here GlobRep is violated since the bottom two clusters come close to each-other in
the marked region.

As previously, write EXT for the trace of the clusters and their boundaries outside of the
strip Strip = [T1, T2] × Z. Recall the notation X and Y for the vertical positions of the
renewals at the times T1 and T2. Then ϕ[·|Con,NI,EXT]3 on the complement of EXT is the
measure ϕ0EXTc conditioned on X being connected to Y by disjoint clusters contained in the
respective diamonds. Write Diami for the fact that the i-th connection above occurs indeed
in the corresponding diamond, and set Diam =

⋂
1≤i≤r Diami. Then

ϕ
[
GlobRepc|NI,Con,EdgeReg

]
=
∑
Ext

ϕ
[
GlobRepc

∣∣NI,Con,EXT = Ext
]
ϕ
[
EXT = Ext

∣∣Con,NI,EdgeReg]
=
∑
Ext

ϕ [GlobRepc,NI,Con|EXT = Ext]

ϕ [NI,Con|EXT = Ext]
ϕ
[
EXT = Ext

∣∣Con,NI,EdgeReg] ,(4.29)

where the sum runs over all possible edge-regular realizations Ext of EXT. We are going to
focus on bounding the ratio above uniformly over Ext. This ratio may be written as

ϕ [GlobRepc,NI,Con|EXT = Ext]

ϕ [NI,Con|EXT = Ext]
=
ϕ0Extc [GlobRep

c,NI,Con,Diam]

ϕ0Extc [NI,Con,Diam]
. (4.30)

Lemma 4.4.1 and Corollary 4.3.3 allow us to lower bound the denominator as

ϕ0Extc [NI,Con,Diam] ≥ 1
χV (X )V (Y )(T2 − T1)−

r2

2 e−τr(T2−T1), (4.31)

where χ and V (·) were described in the aforementioned lemmas. We claim the following
upper bound on the numerator.

3The conditioning on EXT contains implicitly the fact that T1 and T2 are renewals.
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Lemma 4.4.9. There exist constants β > 0 and C > 0 such that, for any edge-regular Ext

ϕ0Extc [GlobRep
c,NI,Con,Diam] ≤ CV (X )V (Y )(T2 − T1)−r

2/2−βe−τr(T2−T1). (4.32)

The lemma above is the main difficulty in the proof of Proposition 4.4.8; we postpone its
proof and finish that of the proposition.

Proof of Proposition 4.4.8. Lemma 4.4.9 together with the estimate (4.23) yield that for any
edge-regular Ext, the following holds:

ϕ0Extc [GlobRep
c,NI,Con,Diam]

ϕ0Extc [NI,Con,Diam]
≤ C

χ (T2 − T1)
−β.

By edge-regularity of Ext, we know that (T2 − T1) ≥ n − 2n1−ε, so that (T2 − T1)−β =
n−β(1 + o(1)). Thus, inserting this estimate into (4.4.2), we proved that

ϕ [GlobRepc|NI,Con,EdgeReg] ≤ C
χn

−β.

Proposition 4.4.8 is obtained by applying equations (4.22), (4.4.2) and (4.4.2).

We now turn to the proof of Lemma 4.4.9. Fix some edge-regular Ext. When NI,Con and
Diam occur, write Γi for the top-most path of the cluster of Xi. This is a non-simple path of
open edges contained in Strip (due to Diam) connecting Xi to Yi. For any such path, write
∂Γi for all the edges of Strip adjacent to and above Γi. Finally, write Γ for the r-tuple of
paths Γ1, . . . ,Γr.

The idea of the proof of Lemma 4.4.9 is to bound the probability of {Γ = γ} for any potential
realisation γ of Γ by the probability of a suitable event in the product measure. Then we use
the Ornstein–Zernike theory to estimate the latter probability. The first step is contained by
the following statement, which constitutes the core of the proof.

Lemma 4.4.10. There exists ε > 0 such that for any possible realization γ of Γ,

ϕ0Extc [Γ = γ,NI,Con,Diam] ≤ (1−exp(−nε))−r(ϕ0Extc)⊗r
[ r⋂
i=1

{γi is open, ∂γi is closed}
]
.

Remark 4.4.11. The careful reader might think that this lemma is in contradiction with
the lower bound given by Lemma 4.4.1. However, observe that while the events Diam and
{Γ = γ} do imply the events Con and NI in the measure ϕ0Extc , it is not the case for the
measure (ϕ0EXTc)⊗r.
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Proof of Lemma 4.4.10. Fix γ as in the statement. The paths γ1, . . . , γr all cross Strip
horizontally, are disjoint and are in increasing vertical order. The same holds for their upper
boundaries ∂γ1, . . . , ∂γr. Moreover,

ϕ0Extc [Γ = γ,NI,Con,Diam] =
r∏
i=1

ϕ0Extc
[
Γi = γi,Diami

∣∣∣ i−1⋂
k=1

{Γk = γk,Diamk}
]

≤
r∏
i=1

ϕ0Extc
[
γi is open, ∂γi is closed

∣∣ i−1⋂
k=1

{Γk = γk,Diamk}
]
.

Our goal is now to prove that for any i ∈ {1, . . . , r},

ϕ0Extc
[
γi is open, ∂γi is closed

∣∣∣ i−1⋂
k=1

{Γk = γk,Diamk}
]

≤ (1− exp(−nε))−1ϕ0Extc [γi is open, ∂γi is closed] . (4.33)

Indeed, assuming that the above inequality is true, we will have proved that

ϕ0Extc
[
Γ = γ,NI,Con,Diam

]
≤

r∏
i=1

(1− exp(−nε))−1ϕ0Ext
[
γi is open, ∂γi is closed

]
= (1− exp(−nε))−r(ϕ0Extc)⊗r

[ r⋂
i=1

{γi is open, ∂γi is closed}
]
.

We thus focus on (4.4.2). The bound is obviously true for i = 1. Fix next i > 1. Write:

ϕ0Extc
[
γi is open, ∂γi is closed

∣∣∣ i−1⋂
k=1

{Γk = γk,Diamk}
]

(4.34)

= ϕ0Extc
[
γi open

∣∣∣ i−1⋂
k=1

{Γk = γk,Diamk}
]
ϕ0Extc

[
∂γi closed

∣∣∣γi open,
i−1⋂
k=1

{Γk = γk,Diamk}
]
.

The first factor is easy to upper bound, as the conditioning decreases the probability for γi to
be open. Indeed, explore the clusters of X1, . . . ,Xi−1 together with their boundaries, and
call Expl the set of explored edges. Because of the conditioning on Diam1, . . . ,Diami−1

and of the disjointness of the paths of γ, γi is disjoint from the explored edges Expl ∪ Ext.
Furthermore, the measure induced on the complement of these clusters by this exploration
procedure is ϕ0(Expl∪Ext)c . By (CBC),

ϕ0(Ext∪Expl)c [γi is open] ≤ ϕ0Extc [γi is open] ,
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γi

T1 T2

γi

T1 T2

∂γi

Figure 4.5: Left: To upperboundϕ0Extc [γi open|
⋂i−1
k=1{Γk = γk,Diamk}] it suffices to explore

the clusters of Γk for k < i and observe that any such instance induces negative information
on the rest of the space. Right: When bounding ϕ0Extc [∂γi closed|γi open,

⋂i−1
k=1{Γk =

γk,Diamk}], the conditioning may increase the probability for ∂γi to be closed, but not more
so than the occurrence of HL ∩ HR. The latter events are ensured by the existence of the
infinite dual paths on the left and right of the strip.

which in turn implies

ϕ0Extc
[
γi is open

∣∣∣ i−1⋂
k=1

{Γk = γk,Diamk}
]
≤ ϕ0Extc [γi is open] . (4.35)

We turn to the second factor in the right-hand side of (4.4.2). Upper bounding this term is
slightly more subtle, since the the boundary conditions induced by the conditioning may a
priori help ∂γi to be closed. Introduce the following events

HL =
{
(T1,Yi)

∗ is connected to∞ by a dual open path lying in Stripc
}

and
HR =

{
(T2,Yi)

∗ is connected to∞ by a dual open path lying in Stripc
}
.

We now claim that

ϕ0Extc
[
∂γi closed

∣∣∣γi open,
i−1⋂
k=1

{Γk = γk,Diamk}
]
≤ ϕ0Extc

[
∂γi closed

∣∣HL ∩HR ∩ {γi open}
]
.

(4.36)

Indeed, the conditioning on
⋂i−1
k=1{Γk = γk,Diamk} may induce negative information,

which improves the probability of ∂γi to be closed. Nevertheless, this influence is weaker
than that of the decreasing eventsHL andHR. A formal proof of the above is obtained by
conditioning on the lowest paths producing HL and HR; we do not give additional details
here.

The following claim will be particularly convenient to handle the right-hand side of the above.
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Claim 4.4.12. There exist constants ε > 0 and c > 0 such that

ϕ0Extc
[
HL ∩HR

∣∣γi is open
]
≥ 1− exp (−cnε) .

Proof of Claim 4.4.12. The proof is a standard argument using the properties of the subcritical
regime. We will prove that

ϕ0Extc
[
HL
∣∣γi is open

]
≥ 1− 1

2 exp (−cn
ε) , (4.37)

and the claim will follow by the union bound.

The eventHL is decreasing and the conditioning only depends on the configuration in Strip.
Thus (CBC) implies

ϕ0Extc
[
HL
∣∣γi is open

]
≥ ϕ1Stripc

[
HL
]
.

ForHL to fail, there must exist at least one index k ≥ 0 such that (−k, xi) is connected to the
vertical axis {T1} × Z by a (primal) open path lying in the half-plane (−∞, T1]× Z. Thus

ϕ1Stripc
[
(HL)c

]
≤
∑
k≥0

ϕ1Stripc
[
(−k, xi)↔ {T1} × Z

]
. (4.38)

It is well-known that the exponential decay of the primal cluster applies also within wired
boundary conditions [52], and therefore the terms in the sum above are bounded above by
e−ck for some c > 0 and all k. Summing over k ≥ 0 we find

ϕ1Stripc
[
(HL)c

]
≤ Ce−cT1 .

By the cone confinement property T1 ≥ nε

2δ . This proves (4.4.2) after altering the constants.

We are now ready to conclude. The claim along with (4.4.2) imply that

ϕ0Extc
[
∂γi closed

∣∣∣γi open,
i−1⋂
k=1

{Γk = γk,Diamk}
]
≤
(
1− e−cn

ε)−1
ϕ0Extc

[
∂γi closed

∣∣γi open
]
.

The above, together with (4.25) may be inserted into (4.4.2) to obtain (4.4.2). As already
mentioned, this concludes the proof of Lemma 4.4.10

We turn to the second step of the proof of Lemma 4.4.9.
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Proof of Lemma 4.4.9. Recall the definition of the family of paths Γ, defined when NI, Con
and Diam occur. Define the set ClosePath of realisations γ of Γ for which there exists
2 ≤ i ≤ r and T1 ≤ t ≤ T2 such that

dist
[
γi−1 ∩ ({t} × Z), γi ∩ ({t} × Z)

]
< (log n)3.

We first observe that

ϕ0Extc [GlobRep
c,Con,NI,Diam]

≤ ϕ0Extc [GlobRepc,BigDiamc,Con,NI,Diam] + ϕ0Extc
[
BigDiam,Con,NI

]
≤

∑
γ∈ClosePath

ϕ0Ext [Γ = γ,Con,NI,Diam] + e−c(logn)
2−τr(T2−T1). (4.39)

Indeed, the second inequality is true term by term. For the first term, due to BigDiamc,
the clusters are entirely within distance (log n)2 of the corresponding paths Γi. Thus, for
GlobRepc to occur, the paths Γi need to come within distance (log n)2 + 2(log n)2 of each
other, and in particular need to belong to ClosePath. The bound on the second term is a
direct consequence of Lemma 4.4.4 and (4.2). The second term obviously satisfies the upper
bound in (4.24), and we may focus on bounding the first term.

By (4.4.2) and Lemma 4.4.10,

ϕ0Extc
[
GlobRepc,BigDiamc,Con,NI,Diam

]
≤ (1 + o(1))

∑
γ∈ClosePath

(ϕ0Extc)
⊗r
[ r⋂
i=1

{γi open, ∂γi closed}
]

≤ (1 + o(1)) (ϕ0Extc)
⊗r[∃γ ∈ ClosePath s.t. ∀i ∈ {1, . . . , r}, γi open, ∂γi closed

]
.(4.40)

The last upper bound is obtained by observing that when the last event is satisfied, at most
one family of paths of ClosePath can achieve it (due to the event Diam). We will bound
the last term using the Ornstein–Zernike coupling Φ0,⊗r

Extc,(T1,X )→(T2,Y )[ · ] and the random
skeleton system S given by this coupling. This argument will only be sketched as it already
appeared in the proof of Proposition 4.3.1.

Under the event in the last line of (4.4.2), the paths γ1, . . . , γr contain all the renewal
points of the clusters Ci in Strip, and therefore the synchronised skeleton Š is guaranteed
to be non-intersecting. In addition, due to the diamond confinement property and since
γ ∈ ClosePath, inft∈[T1,T2] Gap(Š(t)) ≤ 3 log2 n + (log n)2 with probability going to 1.
Finally we conclude that

(ϕ0Extc)
⊗r[∃γ ∈ ClosePath such that ∀i ∈ {1, . . . , r}, γi is open, ∂γi is closed

]
≤ (1 + o(1)) e−τr(T2−T1)Φ⊗r

(T1,X )→(T2,Y )

[
Š ∈ W[T1,T2], Gap(Š(t)) ≤ 4 log2 n

∣∣EXT = Ext
]
.
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We now use once the local limit Theorem 4.5.5 and then Lemma 4.5.12 (the assumptions of
the lemma are satisfied due to the edge-regularity of Ext) to conclude that

Φ⊗r
(T1,X )→(T2,Y )

[
Š ∈ W[T1,T2],Gap(Š(t)) ≤ 4 log2 n

∣∣EXT = Ext
]

≤ CV (X )V (Y )(T2 − T1)−
r2

2 (T2 − T1)−β.

Putting everything together and coming back to (4.4.2), we obtain:

ϕ0Extc [GlobRep
c,Con,NI,Diam] ≤ C V (X )V (Y ) (T2 − T1)−

r2

2
−βe−τr(T2−T1),

which concludes the proof.

4.4.3 The mixing argument and the proof of Theorems 4.1.6 and 4.1.11

We start with the proof of Theorem 4.1.6.

Proof of Theorem 4.1.6. Recall that one bound, namely

ϕ [NI,Con] ≥ c V (x)V (y)n−
r2

2 e−τrn (4.41)

has already been proved in Remark 4.4.2. Our goal here is to prove a matching upper bound.

Running the argument used in the proof of Lemma 4.4.9, but summing over all realisations
of Γ rather than only those in ClosePath yields

ϕ0Extc [NI,Con] ≤ CV (X )V (Y )(T2 − T1)−
r2

2 e−τr(T2−T1). (4.42)

The above does not match the desired bound since T1 is larger than 0 and T2 smaller than n
by a polynomial quantity. Moreover, V (X ) and V (Y ) are also of polynomial order. To
obtain the upper bound matching (4.27), we will run the same argument with T1 and T2
replaced with random times of finite order.

Let T̃1 (resp. T̃2) be the first (resp. the last) synchronization point of the maximal skeletons
of the clusters after 0 (resp. before n). We also call X̃ (resp. Ỹ ) the unique vector such that
(T̃1, X̃i) ∈ Ci (resp. (T̃2, Ỹi) ∈ Ci). We already argued in the proof of Lemma 4.4.4 that T̃1
and T̃2 have exponential tails: for any t ≥ 0 large enough,

ϕ
[
max{T̃1, T̃2} > t|Con,NI

]
≤ e−ct.

We also already argued that

ϕ
[
max{∥X̃ − x∥, ∥Ỹ − y∥} > t|Con,NI

]
≤ e−ct,
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for a possibly different value of c > 0. For the rest of this proof fix t so that e−ct ≤ 1/2.
Then, we upper bound:

ϕ
[
Con,NI

]
= ϕ

[
Con,NI,max{∥X̃ − x∥, ∥Ỹ − y∥} > t

]
+ ϕ

[
Con,NI,max{∥X̃ − x∥, ∥Ỹ − y∥} < t

]
≤ ϕ

[
Con,NI

∣∣max{∥X̃ − x∥, ∥Ỹ − y∥} < t
]
+ 1

2ϕ
[
Con,NI

]
.

Hence, we obtain that

ϕ [Con,NI] ≤ 2ϕ
[
Con,NI

∣∣max{∥X̃ − x∥, ∥Ỹ − y∥} < t
]
. (4.43)

We focus on upper bounding ϕ[Con,NI|max{∥X̃ − x∥, ∥Ỹ − y∥} < t], and will do so
using the method of Lemma 4.4.10. As in the proof of Lemma 4.4.10, condition on the shape
of the clusters outside of Strip = [T̃1, T̃2]× Z to write:

ϕ
[
Con,NI|max{∥X̃ − x∥, ∥Ỹ − y∥} < t

]
=
∑
Ext

ϕ0Extc [Con,NI,Dian]

× ϕ
[
Ext = Ext|max{∥X̃ − x∥, ∥Ỹ − y∥} < t

]
.

As previously, the conditioning on EXT contains the fact that T̃1 and T̃2 are renewals.

Fix some Ext appearing in the sum above. Recall the definition of the top-most path Γi of
the cluster Ci and its upper boundary ∂Γi. Then

ϕ0Extc
[
Con,NI,Diam

]
≤
∑
γ

r∏
i=1

ϕ0Extc
[
γi open

∣∣∣ i−1⋂
k=1

{Γk = γk,Diamk}
]

× ϕ0Extc
[
∂γi closed

∣∣∣γi open,
i−1⋂
k=1

{Γk = γk,Diamk}
]
,(4.44)

where the sum is over all possible realisations γ of Γ that induce disjoint connections between
X̃ and Ỹ .

The two terms in the right-hand side of the above may be bounded as in Lemma 4.4.10 by

ϕ0Extc
[
γi open

∣∣ i−1⋂
k=1

{Γk = γk,Diamk}
]
≤ ϕ0Extc

[
γi open

]
and

ϕ0Extc
[
∂γi closed

∣∣γi open,
i−1⋂
k=1

{Γk = γk,Diamk}
]
≤ Cϕ0Extc

[
∂γi closed

∣∣γi open
]
(4.45)
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This is the only place where the proof differs a little from that of Lemma 4.4.10. Indeed, in
the second bound above, we will use that

ϕ0Extc
[
HL ∩HR

∣∣γi open
]
≥ c. (4.46)

for some universal constant c, whereHL andHR are defined as in Claim 4.4.12. The proof of
(4.4.3) is easier than that of Claim 4.4.12: it relies simply on the fact that, in the subcritical
regime, the dual percolates even in a half-plane with wired boundary conditions.

Now, injecting (4.4.3) back into (4.4.3), we find that

ϕ0Extc
[
Con,NI,Diam

]
≤ C (ϕ0Extc)

⊗r[∃γ s.t. ∀i ∈ {1, . . . , r}, γi open, ∂γi closed
]

(4.47)

We conclude using the Ornstein–Zernike coupling for the product measure. Indeed, the event
on the right-hand side of (4.4.3) implies that, in the product measure, the connection event
occurs and the synchronized skeletons are non-intersecting. Thus,

ϕ0Extc
[
Con,NI,Diam

]
≤ C e−τr(T̃2−T̃1)ϕ0,⊗r

(T̃1,X̃ )→(T̃2,Ỹ )

[
Š ∈ W[T̃1,T̃2]

∣∣Ext = Ext
]
.

We make use of the Local limit Theorem 4.5.5 to upper bound the right-hand side probability
by C V (X̃ )V (Ỹ )(T̃2 − T̃1)−

r2

2 . Using the assumption on Ext, we then very roughly upper
bound

max{V (X̃ ), V (Ỹ )} ≤ (2max{∥X̃ −x∥, ∥Ỹ −y∥})
r(r−1)

2 V (x)V (y) ≤ V (x)V (y)(2t)
r(r−1)

2 .

Gathering everything together, we conclude that for all Ext satisfying max{∥X̃ ∥, ∥Ỹ ∥} ≤ t
and max{T̃1, n− T̃2} ≤ t

ϕ0Extc
[
Con,NI

]
≤ C (2t)

r(r−1)
2 V (x)V (y)e−τr(n−2t)(n− 2t)

r2

2 ≤ C ′V (x)V (y)e−τrnn
r2

2 .

Summing over all such Ext and using (4.29) we find that

ϕ
[
Con,NI

]
≤ C ′ V (x)V (y)e−τrnn−

r2

2 ,

where the value of C ′ has been increased between every equation, but does not depend on n.
This concludes the proof.

We then turn to the proof of Theorem 4.1.11. It follows from the repulsion estimate of
Proposition 4.4.8 and the convergence of the product system stated in Proposition 4.3.1. The
observation is that when GlobRep occurs, then it is a consequence of the mixing property of
the random-cluster measure (MIX) that the distribution of the system of clusters is very close
to the one of an independent system of clusters.
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Proof of Theorem 4.1.11. We follow the same pattern as in the proof of Proposition 4.3.1, and
use the strategy given by Lemma 4.3.10. Fix some δ > 0 and arbitrary signs for the r envelopes
which we denote by ±. As previously, define the scaled process Γ±

n (t) :=
1√
n
Γ±(nt), and

consider a function f : C([δ, 1− δ],Rr)→ R, continuous and bounded. As in the proof of
Proposition 4.3.1 we shall omit to write the restriction to the interval [δ, 1− δ] when writing
f δ(Γ±

n ). We start by arguing that due to the boundedness of f δ and to Lemma 4.4.7,

ϕ
[
f δ(Γ±

n )
∣∣NI,Con] = (1 + o(1))ϕ

[
f δ(Γ±

n )
∣∣NI,Con,EdgeReg].

Next, we condition on T1, T2 and the edge-regular shape of the clusters outside of Strip :=
Strip[T1,T2]. Due to the edge-regularity condition, we can chose n large enough so that
nδ > T1 and n(1− δ) < T2. We find

ϕ
[
f δ(Γ±

n )
∣∣NI,Con,EdgeReg] =∑

Ext

ϕ
[
f δ
(
Γ±
n

)∣∣NI,Con,EXT = Ext
]

× ϕ
[
EXT = Ext

∣∣NI,Con,EdgeReg].
Fix some Ext which is edge-regular. We make use of Proposition 4.4.8 to argue that:

ϕ
[
f δ(Γ±

n )|NI,Con,EXT = Ext
]
=

(1 + o(1))ϕ
[
f δ(Γ±

n )|NI,Con,EXT = Ext,GlobRep
]
.

Now, we claim that the mixing property (MIX) implies that∣∣∣∣ ϕ
[
f δ(Γ±

n )|NI,Con,EXT = Ext,GlobRep
]

ϕ⊗r
[
f δ(Γ±

n )|NI,Con,EXT = Ext,GlobRep
] − 1

∣∣∣∣ < e−2(logn)2 . (4.48)

Indeed, decompose the term ϕ
[
f δ(Γ±

n )|NI,Con,EXT = Ext,GlobRep
]

as follows:

ϕ
[
f δ(Γ±

n )|NI,Con,EXT = Ext,GlobRep
]
=
∑

C1,...,Cr

f δ(Γ±
n )
ϕ0Extc

[
C1 = C1, . . . , Cr = Cr

]
ϕ0Extc

[
NI,Con,Globrep

] ,

where the sum runs over the possible realisations C1, . . . , Cr of the clusters of X under the
measure ϕ0Extc [·|NI,Con,GlobRep]. The point is that those sets are almost surely finite and
have a mutual distance larger than δ(log n)3 by the diamond confinement property. We can
then apply (MIX) to both the numerator and the denominator of the fraction to obtain (4.30).

The last thing to notice is that the entropic repulsion estimate (4.21) also holds for the product
measure:

ϕ⊗r
[
GlobRep|ConX ,Y ,NI,EXT = Ext

]
≥ 1− cn−β,
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because of the usual Ornstein–Zernike coupling (4.2.14) and the entropic repulsion for
random walks given by Lemma 4.5.8. In conclusion, we proved that:

ϕ
[
f δ(Γ±

n )|NI,Con,EXT = Ext
]
= (1 + o(1))ϕ⊗r

[
f δ(Γ±

n )|NI,Con,EXT = Ext
]
.

Finally, due to the assumed edge-regularity of Ext and to Proposition 4.3.1, we know that the
RHS converges towards E

[
f δ(σBW(r))

]
. Hence,

ϕ
[
f δ(Γ±

n )|NI,Con
]
−−−→
n→∞

E
[
f δ(σBW(r))

]
,

and so is established point (i) of Lemma 4.3.10. As previously the equicontinuity at 0 and 1
is an easy consequence of basic large deviations estimates. This observation achieves the
proof.

4.5 Local statistics of directed non-intersecting random
bridges

As seen before, by the Ornstein–Zernike theory and the entropic repulsion, a system of
clusters subject to the non-intersection conditioning resembles a system of non-intersecting
directed random walks.

Non-intersecting random walks, and more largely random walks in cones have a very rich
combinatorial and probabilistic structure. They have been studied widely throughout the
last 50 years. The seminal work is the paper of Karlin and McGregor [89] which proves a
determinantal formula for the probability of r random walks to intersect. Their approach only
applies to a very specific class of walks, and is combinatorial by nature; it lead to remarkable
developments around integrable systems of walks (see [67, 88]).

A more probabilistic treatment has been started in [56], [43, 44, 54]. Indeed, in [56] a
definition of the random walk conditioned to stay in a cone was given in terms of a Doob
h-transform by a harmonic function vanishing on the boundary of the cone, allowing the
authors to obtain Local Limit Theorems and invariance principles for a much broader class
of random walks. We briefly summarize the definitions and construction of the concerned
objects.

The goal of this section is then to study the properties of such systems of walks, especially their
behaviour under the diffusive scaling. Let us introduce the relevant object to study.

Definition 4.5.1 (Directed system of random walks). Let r ≥ 1 be an integer, and for
1 ≤ i ≤ r, let (θin, X

i
n)n≥1 be an independent and identically distributed family of

independent and identically distributed random variables on N∗ × Z. We assume that it
satisfies the following properties:

• Both θ11 and X1
1 have an exponential moment.
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• Conditionally on θin, Xi
n is centered.

Call:

Ti
n =

n∑
k=1

θik and Zin =
n∑
k=1

Xi
k

Then the system
(Sn)n≥0 :=

(
(T1

n,Z
1
n), . . . , (T

r
n,Z

r
n)
)
n≥0

is called a system of directed random walks. For any (ki, xi)1≤i≤r ∈ (N× Z)r, we write
P(k,x) for the law of the r-directed random walk with Si0 = (ki, xi) – this is defined as above,
with the addition of an initial offset. When all the ki are equal, which will often be the case,
we make a slight abuse of notation by writing P(k,x) with k ∈ Z, x ∈ Zr.

As observed in the precedent sections, a subcritical percolation cluster can be roughly
described as the trajectory of a directed random walk decorated with δ-confined clusters
of edges. For that reason, it is convenient to study directed system of non-intersecting
random bridges carrying δ-diamonds around their steps. We then make the following
assumption:

Assumption 4.5.2. There exists a δ > 0 such that almost surely,

(θ11, X
1
1 ) ∈ Y

+,δ
0 . (4.49)

Recall the definition of the diamonds from Section 4.2. If (Sn)n≥0 is a system of directed
random walks, we introduce

Dδi,k = Dδ(Ti
k,Z

i
k),(T

i
k+1,Z

i
k+1)

and D(Si) :=
⋃
k≥0

Dδi,k.

We also introduce the diamond-decorated walks analogs of the events Con and NI (see
Figure 4.6).

For y ∈ Rr, n ≥ 0, the hitting event is defined by:

Hit(n,y) =
{
∃k1, . . . , kr ≥ 0,∀i ∈ {1, . . . , r}, (Ti

ki
,S1

k1) = (n, yi)
}
.

The non-intersection of diamond event is defined by

NonIntDiam(S) =
⋂

1≤i ̸=j≤r
{D(Si) ∩ D(Sj) = ∅}.

The goal of this section is the proof of the following result:
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(n, y)
(0, x)

nt

S
4(nt)

S
5(nt)

S
3(nt)

S
2(nt)

S
1(nt)

Figure 4.6: A depiction of a system of r = 5 non-synchronized random walks under the
event

{
S ∈ Wn,Hit(n,y)

}
.

Theorem 4.5.3 (Invariance principle for directed random walks). Let S be a system of r
directed random walks sampled according to P(0,x)

[
·|S ∈ Hit(n,y),NonIntDiam(S)

]
. Then,

there exists σ > 0 such that(
1√
n
S (nt)

)
0≤t≤1

(d)−−−→
n→∞

(
σBW

(r)
t

)
0≤t≤1

,

where the convergence holds in the space C([0, 1],Rr) equipped with the topology of the
uniform convergence. Moreover, x and y can depend on n in the statement, as long as they
both have norms that are o(

√
n).

This theorem, as well as Theorem 4.5.5, has already been proved in the setting of regular
random walks (that is when θ11 = 1 almost surely), and replacing the conditioning over
the non-intersection of diamonds by a conditioning of non-intersection of their spatial
trajectories. Our goal here is simply to extend this to the setting of directed random walks
decorated with diamonds, and state some properties tailored to our needs. The key object to
derive this statement is the embedded synchronized system of directed random walks. We
define it in the next section and derive the key input for the study, which the Local Limit
Theorem 4.5.5.

4.5.1 Synchronized directed random walks

As observed in Sections 4.3 and 4.4 our arguments are often soft enough to boil down to
the study of a synchronized system of walks, where the time reference is still random but
common to every walk.
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Definition 4.5.4 (Synchronized directed random walk). Let r ≥ 1 be an integer. We consider
a sequence of independent and identically distributed random variables (θk, X1

k , . . . , X
r
k)k≥0

taking values in N∗ × Zr. Moreover we assume that

• Both θ1 and X1
1 have an exponential moment

• Conditionally on θ1, X1
1 , . . . , X

r
1 are centered, independent and identically distributed.

We call:

Tn =
n∑
k=1

θk and Zin =
n∑
k=1

Xi
k

Then the system
(Sn)n≥0 =

(
Tn, Z

1
n, . . . , Z

r
n

)
n≥0

is called a synchronized system of directed random walks. In what follows, we see it as
a random object of N × Zr, which we will refer to as (Sn)n≥0 = (Tn, Zn)n≥0 . For any
(k, x) ∈ N×Zr, we will denote by P(k,x) the law of the synchronized r-random walk started
from the point (k, x), i.e. the law of ((k, x) + Sn)n≥0 .

We also assume for convenience that Assumption 4.5.2 holds.

Introduce the following hitting event, for any (n, y) ∈ N× Zr:

Hit(n,y) = {∃k ≥ 0, Sk = (n, y)} ,

and the stopping time

H(n,y) = min {k ≥ 0, Sk = (n, y)} .

Moreover, ρ will denote the stopping time corresponding to the first exit of the Weyl
chamber:

ρ = min {n ≥ 0, Sn /∈W}

The key results of this section are the following:

Theorem 4.5.5 (Local limit Theorem for synchronized, non-intersecting directed random
walks). Let (Sn)n≥0 be a synchronized system of random walks. There exists a function
V :W → R∗

+ and a constant C1 > 0 such that for any pair of sequences (xn)n≥0, (yn)n≥0

taking values in W such that ∥xn∥2 , ∥yn∥2 = o(
√
n), when n −→∞,

P(0,xn)

[
H(n,yn) < ρ,Hit(n,yn)

]
= C1

V (xn)V (yn)

nr2/2
(1 + o(1)) .

Furthermore, the function V satisfies the following set of properties:

1. If x, y ∈W are such that |yi+1 − yi| > |xi+1 − xi| for any 1 ≤ i ≤ r − 1, then

V (y) ≥ V (x).
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2. When Gap(x)→∞, then V (x)
∆(x) → 1.

3. There exists a positive c > 0 such that

V (x) ≤ c
∏

1≤i<j≤r
|1 + xj − xi|

The second local limit result is the analog of Gnedenko’s Local Limit Theorem. It corresponds
to [44, Thm. 5].

Theorem 4.5.6. Let (Sn)n≥0 be a synchronized system of random walks. Then, there exists
a constant κ > 0 such that for any fixed x ∈W ,

sup
y∈W

∣∣∣∣n r(r+1)
4 P(0,x)

[
S ∈ Wn,Hit(n,y)

]
− κV (x)∆

(
y√
n

)
e−

∥y∥22
2n

∣∣∣∣ −−−→n→∞
0.

The last theorem of this section is the invariance principle stating that a synchronized system
of random walks conditioned on the events {H(n,yn) < ρ} and {Hit(n,yn)} converges towards
the Brownian watermelon.

Theorem 4.5.7 (Invariance principle for synchronized, non-intersecting random walks). Let
(Sn)n≥0 be a system of r synchronized random walks. We study the trajectory of S on
[0, H(n,y)] under the measure

P(0,x)

[
· |H(n,y) < ρ,Hit(n,y)

]
.

Let T be the linear interpolation between the points (T1, S1), . . . , (n, y), and S(t) be the
almost surely unique intersection T ∩ ({t} × Rr). Then, there exists σ > 0 such that:(

1√
n
S(nt)

)
0≤t≤1

−−−→
n→∞

(
σBW

(r)
t

)
0≤t≤1

,

The convergence occurs in the space C ([0, 1],Rr) endowed with the topology of uniform
convergence. Moreover, the convergence holds when x, y depend on n, still as long as their
norm is o(

√
n).

Theorems 4.5.5, 4.5.6 and 4.5.7 have already been derived in the works [56], [43, 44] and
most importantly in [54] in the case of regular random walks, meaning that θ1 = 1 almost
surely. Moreover it has been explained in great detail how to adapt the proofs of these articles
to the case of directed walks in [84]. For that reason, a very brief sketch of proof of these
three important results is deferred to the Appendix.

We also import fast repulsion estimates that are going to be useful later on
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Lemma 4.5.8 (Edge repulsion for synchronized random walks). There exists ε > 0 such that
the following holds. Let

(
Sin
)
n≥0,1≤i≤r be a synchronized system of directed random walks.

Let
ηn = min

{
k ≥ 0, min

1≤i<j≤r

∣∣∣Sik − Sjk∣∣∣ > nε
}
. (4.51)

Then there exists c > 0 such that for any x ∈ Rr, when n is sufficiently large,

P(0,x)

[
ηn > n1−ε

]
< 1

c exp(−cn
ε). (4.52)

Proof. This fact has been proved in [43, Lemma 7] in the case of regular random walks, with
a stronger statement: indeed, the nε in the definition of ηn is replaced by n

1
2
−ε in the latter

paper. We briefly explain how to derive the result in our setting. First, condition on the
time increments (θk)k≥0. The spatial increments become a sequence of independent (though
non identically distributed) random variables. However one can check that the proof of [43,
Lemma 7] can be mutatis mutandi repeated in that setting.

Remark 4.5.9. Since this probability in (4.34) is stretch-exponentially small, the bound also
holds - up to a change in the constant c - when conditioning the synchronized system of
random walks on an event of polynomial probability. In particular, the next corollary follows
from (4.34) and Theorem 4.5.5 (which will be proved shortly without the use of the statement
below).

Corollary 4.5.10. There exists ε > 0 such that the following holds. Let
(
Sin
)
1≤i≤r,n≥0

be a
synchronized system of directed random walks. Then there exists c > 0 such that for any
x, y ∈ Rr, when n is sufficiently large,

P(0,x)

[
ηn > n1−ε|Hit(n,y)

]
< 1

c exp(−cn
ε).

Using the input given by the Local Limit Theorem 4.5.5, we are now able to derive the
essential bulk repulsion for non-intersecting synchronized random walks in the next two
lemmas.

Lemma 4.5.11. Let S be a system of directed synchronized random walks and fix ε > 0.
Then, for any δ > 0 sufficiently small, any points x, y ∈W satisfying ∥x∥2 , ∥y∥2 = o(

√
n),

there exist β > 0, C > 0 such that for any n ≥ 0 sufficiently large,

P(0,x)

[
∃t ∈ [nε, n− nε],Gap(S(t)) ≤ nδ

∣∣H(n,y) < ρ,Hit(n,y)
]
≤ Cn−β. (4.53)

Proof. First, notice that one can actually examine only integer values of t in (4.35) since the
minimal distance between two synchronized piecewise linear functions is achieved at a slope
change time, which by definition of S is an integer. Introduce the following kernel:

qn(x, y) = P(0,x)

[
S ∈ Wn,Hit(n,y)

]
. (4.54)
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By the union bound it is sufficient to prove that

P(0,x)

[
∃k ∈ {nε, . . . , n− nε}, |Si(k)− Si−1(k)| ≤ nδ

∣∣S ∈ Wn,Hit(n,y)
]
≤ Cn−β.

for any 2 ≤ i < r. Fix such an i and introduce the following subset of W

Wn,δ =
{
u ∈W, |ui − ui−1| < nδ

}
.

We make use of Theorems 4.5.5 and 4.5.6. Indeed, choose n large enough so that for
nε < k < n− nε, one has that for any u ∈Wn,δ:

qn(x, y) ≥ (1− ε)V (x)V (y)n−
r2

2

qk(x, u) ≤ 2V (x)∆
(
u√
k

)
k−

r(r+1)
4 e−

∥u∥22
2k

qn−k(u, y) ≤ 2V (y)∆
(

u√
n−k

)
(n− k)−

r(r+1)
4 e

− ∥u∥22
2(n−k) .

Then, a union bound over k yields:

P(0,x)

[
∃k ∈ {nε, . . . , n− nε},

∣∣Si+1(k)− Si(k)
∣∣ ≤ nδ ∣∣∣S ∈ Wn,Hit(n,y)

]
≤

n−n1−ε∑
k=nε

∑
u∈Wn,δ

qk(x, u)qn−k(u, y)

qn(x, y)

≤ 4
1−ε

n−n1−ε∑
k=nε

∑
u∈Wn,δ

n
r2

2 (k(n− k))−
r(r+1)

4 ∆
(

u√
k

)
∆
(

u√
n−k

)
e−

∥u∥22
2 ( 1

k
+ 1

n−k ).

We make two observations: the first is that this sum is actually symmetric around n
2 , so that

it is sufficient to bound it for k going from nε to n
2 . The second is that since u ∈Wn,δ, we

have:
∆
(

u√
k

)
≤ 2 ∥u∥

r(r−1)
2

−1

2 nδ k−
r(r−1)

4 .

Then,

P(0,x)

[
∃k ∈ {nε, . . . , n− nε}, |Si+1(k)− Si(k)| ≤ nδ

∣∣∣Hit(n,y), τ > H(n,y)

]
≤ 32

1−ε

n
2∑

k=nε

(
n

k(n−k)

) r2

2
n2δ

∑
u∈Wn,δ

∥u∥r(r−1)−2
2 e−

∥u∥22
2k

︸ ︷︷ ︸
I

.

We then evaluate the order of the sum I . Indeed, let us write:

I =
∑
ℓ≥0

∑
u∈Wn,δ

∥u∥2=ℓ

ℓr(r−1)−2e−
ℓ2

2k <⌢
∑
ℓ≥0

nδℓr−2ℓr(r−1)−2e−
ℓ2

2k ,
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where we have used the fact that when ℓ→∞, if Bℓ(0) denotes the ∥·∥2 ball of Rr centered
at 0 and of radius ℓ, then

|Wn,δ ∩ ∂Bℓ(0)| <⌢ nδℓr−2. (4.55)

We then compare the latter sum with the integral
∫∞
x=0 x

r2−4e−
x2

2k dx, which after the change
of variables t = x2

2k , can be explicitly evaluated:∫ ∞

x=0
xr

2−4e−
x2

2k dx =
√
2
r2−5

Γ
(
r2−3
2

)
k

r2−3
2 .

Inserting this into our previous computation we find

P(0,x)

[
∃k ∈ {nε, . . . , n− nε}, |Si+1(k)− Si(k)| ≤ nδ

∣∣∣S ∈ Wn,Hit(n,y)

]
≤ C

n/2∑
k=nε

(
n

k(n−k)

) r2

2
n3δk

r2−3
2 ≤ Cn3δ

∞∑
k=nε

k−
3
2 ≤ Cn3δn−

ε
2 .

Hence, whenever δ < ε
6 , this probability decays polynomially, as announced.

In the proofs of Sections 4.3 and 4.4, we used this lemma under a slightly different form that
we state now.

Lemma 4.5.12. Let S be a directed system of synchronized random walks and ε > 0. Let
xn, yn two sequences of elements of W such that

min{Gap(xn),Gap(yn)} ≥ nε and ∥xn∥2 , ∥yn∥2 = o(
√
n).

Then, for any δ > 0 sufficiently small, there exist β > 0 and C > 0 such that for n ≥ 0 large
enough,

P(0,xn)

[
inf

0≤t≤n
Gap(S(t)) ≤ nδ

∣∣∣ S ∈ Wn,Hit(n,yn)

]
≤ Cn−β.

Proof. All the work has been done in Lemma 4.5.11. Indeed, we already know that

P(0,xn)

[
inf

nε≤t≤n−nε
Gap(S(t)) ≤ nδ

∣∣∣ S ∈ Wn,Hit(n,yn)

]
≤ Cn−β.

It remains to control the range of indexes k ∈ {1, . . . , nε} ∪ {n− nε, . . . , n} (observe that
we cannot make use of the local limit theorems in this range). However it is a basic large
deviations estimate: let us write it for k ∈ {0, . . . , nε}. We roughly bound

P(0,xn)

[
inf

0≤k≤nε
Gap(S(k)) ≤ nδ

∣∣∣ S ∈ Wn,Hit(n,yn)

]
≤

P(0,xn)

[
inf0≤k≤nε Gap(S(k)) ≤ nδ

]
P(0,xn)

[
S ∈ Wn,Hit(n,yn)

] .
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Now observe that for the event of the numerator to occur, one of the walks has to travel at
a distance at least 1

2(n
ε − nδ) of its starting point in a time nε, which by large deviations

occurs with stretched exponentially small probability as soon as δ < ε. Additionally, by
Theorem 4.5.5, the denominator is of order at most polynomial. Thus

P(0,xn)

[
inf

0≤k≤nε
Gap(S(k)) ≤ nδ

∣∣∣ S ∈ Wn,Hit(n,yn)

]
≤ Ce−cnε

,

for constants c, C > 0. The same holds for k ∈ {n − nε, . . . , n}, and the union bound
provides the desired result.

4.5.2 Synchronized systems of random walks with random decora-
tions

To prove Theorem 4.5.3, we are going to compare a system of decorated non-intersecting
random bridges with a system of decorated non-intersecting synchronized random bridges.
This motivates us to study the properties of such a system. Recall the definition of D(Si)
form the precedent section. When S is a synchronized system of directed walks, we simply
set

Dδi,k = Dδ(Tk,Si
k),(Tk+1,S

i
k+1)

.

and
D(Si) =

⋃
k≥0

Dδi,k.

The crucial result of this section is the following lemma - adapted from [103, Lemma
2.7]

Lemma 4.5.13. Let δ > 0, and x, y ∈W . Then, there exists c > 0 such that:

P(0,x)

[
S ∈ Hit(n,y),NonIntDiam(S)

]
> cP(0,x)

[
S ∈ Wn,Hit(n,y)

]
.

Proof. We need to prove that there exists some c < 1 such that

P(0,x)

[
∃1 ≤ i < j ≤ r,D(Si) ∩ D(Sj) ̸= ∅|S ∈ Wn,Hit(n,y)

]
≤ c.

By the union bound, the latter probability is lesser or equal than∑
1≤i≤r−1

P(0,x)

[
D(Si) ∩ D(Si+1) ̸= ∅|S ∈ Wn,Hit(n,y)

]
,

and we now focus on the terms of this sum. Introduce the following family of events (recall
that θk = Tk+1 − Tk) :

Lk =
{∣∣Si+1

k − Sik
∣∣ < 2δθk+1

}
.
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Observe that due to the cone-confinement property, if
{
D(Si+1) ∩ D(Si) ̸= ∅

}
, then one

of the Lk must occur. Now we call N the total number of steps. There exists a constant
µ := E[θ1]−1 such that N ∈ [(µ− ε)n, (µ+ ε)n] with exponentially large probability in n.
For sake of simplicity, we continue the computation assuming that N = µn. Formally one
should sum over all the possible values of N in the latter range, but it makes no difference in
the proof. We even only treat the special case µ = 1, as a general µ would only modify the
constants inside our estimates but not the dependency in n. Let T > 0 be a large integer, that
will be fixed later. We first argue that there exists a constant c1 > 0 which only depends on δ
such that

P(0,x)

[
n⋃
k=1

Lk|S ∈ Wn,Hit(n,y)

]
≤ e+c1TP(0,x)

[
n−T⋃
k=T

Lk|S ∈ Wn,Hit(n,y)

]
.

This is a finite-energy property, the fact that c1 is uniform over T comes from the cone-
confinement property. Then by union bound, let us write:

P(0,x)

[
n−T⋃
k=T

Lk|S ∈ Wn,Hit(n,y)

]

≤
n−T∑
k=T

P(0,x)

[
Lk|S ∈ Wn,Hit(n,y)

]
≤

n−T∑
k=T

n−k∑
ℓ=1

P(0,x)

[
Lk, θk+1 = ℓ|S ∈ Wn,Hit(n,y)

]
≤

n−T∑
k=T

n−k∑
ℓ=1

P(0,x)

[∣∣Si+1
k − Sik

∣∣ < 2δℓ, θk+1 = ℓ|S ∈ Wn,Hit(n,y)
]

≤
n−T∑
k=T

n−k∑
ℓ=1

∑
u∈Wδℓ

∑
v∈W

e−c1ℓe−c2∥u−v∥2
qk(x, u)qn−l−k(v, y)

qn(x, y)
,

where as in the proof of Lemma 4.5.12, we have introduced the kernel

qn(x, y) = P(0,x)

[
S ∈ Wn,Hit(n,y)

]
,

and the notation
Wδℓ = {u ∈W, |ui+1 − ui| < δℓ} .

Moreover, we also used the property that both the random variables θk and X̌k have an
exponential moment. We now use the same technique as in Lemma 4.5.11 and choose
T > 0 large enough (uniformly of everything else) to upper bound the latter quantity, using
Theorems 4.5.5 and 4.5.6:
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P(0,x)

[
n−T⋃
k=T

Lk|S ∈ Wn,Hit(n,y)

]

≤ 2C

1− ε

n/2∑
k=T

(
n

k(n− k)

) r2

2
n−k∑
ℓ=1

e−c1ℓ(δℓ)2
∑
u∈Wδℓ

∥u∥r(r−1)−2
2 e−

∥u∥22
2k

︸ ︷︷ ︸
I

.

As in the proof of Lemma 4.5.11, we now estimate the sum I . Here, we will use crucially the
fact that we sum over Wδℓ and not over W . We write

I =
∑
s≥0

∑
u∈Wδℓ
∥u∥2=s

sr(r−1)−2e−
r2

2k

≤ Cδℓ
∑
s≥0

sr−2sr(r−1)−2e−
r2

2k .

We used once again the estimation (4.37) for the volume of the set we are summing over.
As before, we compare this sum to the integral I2 =

∫∞
x=0 x

r2−4e−
x2

2k dx, which, after the
appropriate change of variables t = x2

2k , can be explicitly computed, yielding

I2 =
√
2
r2−5

Γ(
r2 − 3

2
)k

r2−3
2 .

Continuing our previous computation, we obtain that:

P(0,x)

[ n−T⋃
k=T

Lk|S ∈ Wn,Hit(n,y)

]

≤ 2C̃

1− ε

n/2∑
k=T

(
n

k(n− k)

) r2

2

k
r2−3

2

n−k∑
ℓ=1

e−c1ℓ(δℓ)3

≤ 2C̃

1− ε

n/2∑
k=T

k−
r2

2
+ r2

2
− 3

2

≤ 2C̃

1− ε
T− 1

2 .

Chose T > 0 large enough so that quantity is smaller than 1
2 . We then showed that:

P

[
n⋂
k=1

Lck|S ∈ Wn,Hit(n,y)

]
≥ 1

2
e−c1T ,

which conclude the proof, since T > 0 has been chosen uniformly of n.
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4.5.3 Non-intersecting systems of decorated directed random walks

The goal of this section is to transmit the result of Section 4.5.1 to the setting of non-
synchronized random walks. For that, we will interpret such a system as an embedded
synchronized random walk carrying random decorations, and use the results of the precedent
section.

Before diving into the proof, we introduce the ”embedded system of synchronized random
walks” of a system of random walks.

Definition 4.5.14 (Embedded system of synchronized random walks). Let (Sn) = (Tn,Zn)
be a system of non-synchronized directed random walks. Introduce the random set of
synchronization times:

ST =
{
ℓ ≥ 0,∃k1(ℓ), . . . , kp(ℓ) ≥ 0,T1

k1 = · · · = Tr
kp = ℓ

}
.

Writing ST = {ℓ1 < · · · < ℓr < . . . }, we define the ”embedded system of synchronized
random walks” to be the process:(

Šn
)
n≥0

=
(
ℓn,Z

1
k1(ℓn)

, . . . ,Zrkp(ℓn)

)
n≥0

.

Observe that in particular the trajectory of Š is a subset of the trajectory of S, and that by
definition the system Š is synchronized.

Lemma 4.5.15. The process Š is a synchronized system of random walks (recall Defini-
tion 4.5.4). Moreover, for any i ∈ {1, . . . , r}, D(Si) ⊂ D(Ši).

Proof. All the statements are easy to check, the exponential tails of the length being a
consequence of the Renewal Theorem of [57].

Lemma 4.5.16. There exists a positive c > 0 such that for any fixed x, y ∈W ,

P(0,x)

[
NonIntDiam(S),Hit(n,y)

]
> c

V (x)V (y)

n
r2

2

.

Proof. Observe that

P(0,x)

[
NonIntDiam(S),Hit(n,y)

]
≥ P(0,x)

[
NonIntDiam(Š),Hit(n,y)

]
,

so that we focus on lower bounding the right-hand side. We are in the setting of Lemma 4.5.13,
allowing us to write:

P(0,x)

[
NonIntDiam(Š),Hit(n,y)

]
≥ cP(0,x)

[
Š ∈ Wn,Hit(n,y)

]
≥ cV (x)V (y)n−

r2

2 ,
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where the first inequality comes from Lemma 4.5.13 and the second one comes from the fact
that Š has the distribution of a synchronized system of random walks, so that Theorem 4.5.5
applies.

Remark 4.5.17. The exact same technique of proof can be used to show an analog of
Lemma 4.5.12 for non-synchronized random walks. Indeed the probability of two non-
synchronized random walks coming close one from each other can be upper bounded by the
probability of two decorated synchronized random walks coming close one from each other.
Making use of Lemmas 4.5.12 and 4.5.16 we obtain:

Lemma 4.5.18. Let S be a system of non-synchronized random walks. Let x, y two sequences
of elements of W such that

Gap(x),Gap(y) ≥ nε

and
∥x∥2 , ∥y∥2 = o(

√
n).

Then for any δ > 0 sufficiently small,, there exists β > 0, C > 0 such that for n ≥ 0 large
enough,

P(0,x)

[
inf

1≤k≤n
Gap(Sk) ≤ nδ

∣∣ S ∈ Hit(n,y),NonIntDiam(S)

]
≤ Cn−β.

The next step in our way to the proof of Theorem 4.5.3 is then to show a fast repulsion estimate
near the starting and ending points stated in Lemma 4.5.8 in the setting of non-synchronized
systems of non-intersecting bridges. Let ε > 0. As in Sections 4.3 and 4.4 we introduce the
following times:

T1(S) = min
k≥0
{k ≥ 0,Gap(Sk) > nε}

and
T2(S) = max

k≥0
{k ≥ 0,Gap(Sk) > nε} .

Lemma 4.5.19. There exists ε > 0 sufficiently small such that there exists a positive constant
c > 0 such that:

P(0,x)

[
T1(S) > n1−ε, T2(S) < n− n1−ε|S ∈ Hit(n,y),NonIntDiam(S)

]
<

1

c
exp (−cnε) ,

where P(0,x) is the distribution of a non-synchronized system of directed random walks.
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Proof. Recall that Š denotes the synchronized system of random walks embedded in S.
Then,

P(0,x)

[
T1(S) > n1−ε,T2(S) < n− n1−ε|S ∈ Hit(n,y),NonIntDiam(S)

]
≤ P(0,x)

[
T1(Š) > n1−ε, T2(Š) < n− n1−ε|S ∈ Hit(n,y),NonIntDiam(S)

]
≤ 2

P(0,x)

[
T1(Š) > n1−ε

]
P(0,x)

[
S ∈ Hit(n,y),NonIntDiam(S)

]
≤ 2

c
exp(−cnε)n

r2

2 (V (x)V (y))−1,

which proves the lemma for another constant c′ < c provided that n is large enough. The
last inequality comes from Lemma 4.5.8 for upper bounding the numerator, and from
Lemma 4.5.16 for lower bounding the denominator.

We are now ready to prove Theorem 4.5.3. The technique is very similar to the proof of
Theorem 4.1.11. Indeed, we shall wait for a sublinear time that the walks attain a gap of
order nε. After this time, we know that - looking at the process as a system of synchronized
decorated random walks - the diamonds are very likely not to intersect so that the convergence
of the synchronized embedded system towards the Brownian watermelon can be transmitted
to the whole system.

Proof of Theorem 4.5.3. Let S be sampled according to the measure

P(0,x)

[
.
∣∣S ∈ NonIntDiam(S),Hit(n,y)

]
.

Again, since we are going to work between the random times T1 and T2, we need to implement
the strategy given by Lemma 4.3.10. Let δ > 0 and f δ : C([δ, 1− δ],Rr)→ R, continuous
and bounded. Introduce Sn(t) the scaled version of S:

Sn(t) =
1√
n
S(nt).

Our goal is to show that (we keep implicit the restrictions of Sn and BW(r) to the interval
[δ, 1− δ]):

E
[
f δ(Sn)|S ∈ NonIntDiam(S),Hit(n,y)

]
−−−→
n→∞

E
[
f δ(σBW(r))

]
.

We claim that - thanks to Lemma 4.5.19 and the usual deviation argument for random walks -
with probability 1 + o(1), there exist T1 > 0 and T2 < n two random times such that T1 and
T2 are synchronization times for S, and such that

T1 < 2n1−ε and T2 > n− 2n1−ε, (4.56)
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and {
∥S(T1)∥2 , ∥S(T2)∥2 = o(

√
n),

min{Gap(S(T1)),Gap(S(T2))} > 1
2n

ε.
(4.57)

In the rest of the proof, we then condition on the values of T1, T2,S(T1) and S(T2)
satisfying (4.38) and (4.39). Moreover for sake of simplicity in the proof let us call
u = (T1,S(T1)) and v = (T2,S(T2)). As soon as n is large enough so that nδ > T1 and
n(1− δ) < T2, the Markov property for random walks ensures that:

E
[
f δ(Sn|u, v,S ∈ NonIntDiam(S),Hit(n,y)

]
= Eu

[
f δ(Sn|S ∈ NonIntDiam(S),Hitv

]
,

where Eu denotes the expectation under the measure Pu.

Let us consider Š to be the synchronized system embedded into S, and Š(t) be its linear
interpolation. By standard estimates on the max of a linear number of independent random
variables with exponential tails, one gets:

P(0,x)

[
sup

0≤t≤n

∣∣∣S(t)− Š(t)
∣∣∣ > log2 n|S ∈ NonIntDiam(S),Hit(n,y)

]
≤

P(0,x)

[
sup0≤t≤n

∣∣S(t)− Š(t)
∣∣ > log2 n

]
P(0,x)

[
S ∈ NonIntDiam(S),Hit(n,y)

]
≤ 1

c
exp

(
−c(log2 n)

)
(V (x)V (y))−1n

r2

2 ,

where we used Lemma 4.5.16 for the last step. We now work under the event that

sup
0≤t≤n

∣∣S(t)− Š(t)
∣∣ > log2 n.

Hence, for our purpose it is sufficient to show that:

Eu
[
f δ(Šn(t))|S ∈ Hitv,NonIntDiam(S)

]
−−−→
n→∞

E
[
f δ(σBW(r))

]
.

The next step is to replace the conditioning over S belonging to the non-intersection of
diamonds and connection event by a conditioning over Š belonging to the non-intersection
and connection event. Indeed, assuming that we managed to show that this change of
conditioning was justified, the result would follow by Theorem 4.5.7. Our target estimate is
then:

Pu

[
{NonIntDiam(S)}∆

{
Š ∈ WT2−T1

}
|Š ∈ WT2−T1 ,Hitv

]
−−−→
n→∞

0.

Observe that because we work under the event {sup0≤t≤n
∣∣S(t)− Š(t)

∣∣ > log2 n}, then

Pu

[
{S ∈ NonIntDiam(S)}∆

{
Š ∈ WT2−T1

}]
≤ Pu

[
inf

t∈[T1,T2]
Gap(Š(t)) < 4 log3 n|Š ∈ W[T1,T2],Hitv

]
.
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By Lemma 4.5.12 we know that this probability decays to 0 at least polynomially fast. Thus,
we proved that∣∣∣Eu[f δ(Šn(t))|NonIntDiam(S),Hitv

]
− Eu

[
f δ(Šn(t))|Š ∈ W[T1,T2],Hitv

]∣∣∣ −−−→
n→∞

0.

(4.58)
Now because of (4.38) and (4.39), Theorem 4.5.7 applies and we get that

Eu
[
f δ(Šn(t))|Š ∈ W[T1,T2],Hitv

]
−−−→
n→∞

E
[
f δ(σBW(r))

]
for some σ > 0. This concludes the proof of the theorem: as previously condition (i) of
Lemma 4.3.10 is a simple consequence of basic large deviations estimates.

Appendix

Non-confinement in small tubes for a single directed random walk

Lemma 4.5.20 (Non-confinement of single directed random walk). There exists ε0 > 0 such
that that the following holds. Fix ε < ε0. Let (Sn)n≥0 be a directed random walk, and
remember that S(t) denotes its linear interpolation. Let f : R+ → R be any deterministic
function. Then, for any α ∈ (0, 1], there exists c > 0 such that for any x ∈ R,

P(0,x)

[
#
{
k ∈ {0, . . . , n1−ε}, |S(k)− f(k)| < nε

}
> αn1−ε

]
< e−cn

1−3ε
. (4.59)

Limiting the times considered in (4.41) to k ≤ n1−ε rather than the more natural choice
k ≤ n is done only for coherence with the uses of this statement in other parts of the
paper.

Proof. We cut up the interval {0, . . . , n1−ε} in intervals of alternating lengths C 1
2αn

2ε and
C(1 − 1

2α)n
2ε (where C is some fixed constant to be determined). Call these buffer and

main intervals. The buffer intervals occupy a proportion α/2 of the whole walk, so

P(0,x)

[
#
{
k ∈ {0, . . . , n1−ε}, |S(k)− f(k)| < nε

}
> αn1−ε

]
≤ P(0,x)

[
#{k ∈ main intervals , |S(k)− f(k)| < nε} > 1

2αn
1−ε] .

Call the indices k considered above “close points”. Call a main interval bad if it has a
proportion of close points larger than α/4. Then, for the above to be realized, one needs a
proportion of at least α/4 bad main intervals (the good main intervals account for at most
1
4αn

1−ε close points).
Condition now on the trajectory in each of main interval. The only randomness comes from
the starting positions of these main intervals, which are dictated by the buffer intervals.

One can then check that due to the pigeonhole principle, for each main interval, there are at
most 4

α × n
ε starting positions that render them bad. Thus, just because of the buffer interval
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preceding each main interval, due to the Central limit Theorem, the probability of a main
interval to be bad may be rendered small (smaller than any given constant, by choosing C
large enough). Thus choose C so that

P[ one main interval is bad | all the RW except the preceding buffer interval] ≤ α/8.

In total we have have 1
Cn

1−3ε pairs of buffer and main intervals. Each main interval has a
probability at least 1 − α/8 to be good, independently of all other. Thus, the probability
of having a proportion α/4 of bad intervals is a large deviation estimate, and thus has a
probability of order e−cn1−3ε for some constant c that depends on C (itself depending on
α).

A brief sketch of proof of Theorems 4.5.5, 4.5.6 and 4.5.7

As explained previously, Theorems 4.5.5, 4.5.6 and 4.5.7 have already been proved in the
case of regular random walks in [43, 44, 54], under a weaker moment assumption and the
assumption that the coordinates of the walk are exchangeable — which suits to our setting. It
has already been explained in [84] how to transfer Local limit Theorems proved for regular
random walks to the case of directed random walks, and the same method applies mutatis
mutandi to our setting. Indeed, the proof consists in conditioning on the number of steps of
the walk called N , an considering three different cases. Indeed, large deviation estimates
allow to rule out the case N /∈ [(µ ± ε)n], with µ := E[θ1]−1. Then, the contribution of
the indexes N ∈ [(µ− ε)n, µn− A

√
n] ∪ [µn+ A

√
n, (µ+ ε)n] is shown to be of order

f(A)n−
r2

2 V (x)V (y), with f(A)→ 0 when A→∞. As explained in [84], the important
idea is to perform an exponential tilt of the random walk by the length of its time increments,
and to analyze this new measure by standard random walks estimates. The proof finally
reduces to the case where N lies in the interval [µn± A

√
n], where A is a large constant.

The proofs of [44] can then be mimicked. The discussion of [84, Proof of Thm 5.1] — in
particular the observation that the harmonic function V does not depend on the time reference
— shows that the result is uniform in starting points satisfying ∥x∥, ∥y∥ = o(

√
n). It then

may be considered as folklore that Theorems 4.5.5, 4.5.6 and 4.5.7 do hold in the case of
synchronized directed random walks.
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Chapter 5

Near-critical Ornstein–Zernike theory

5.1 Introduction

Rigorous understanding of the correlation structure of random fields is one of the main
objectives of modern statistical mechanics. In this article, we focus on one of the most
studied such models : the so-called planar random-cluster measure (also known as FK
percolation). The classical Ornstein–Zernike (OZ) formula describes the behaviour of the
two-point correlation function G(x) := ϕp,q[0←→ x] when x goes to infinity, where ϕp,q is
the random-cluster measure of parameters p and q, when p is such that the model is in its
subcritical (or disordered) phase. It quantifies the behaviour of G beyond its exponential
decay and is sharp in the regime in which x tends to infinity.

The OZ formula (it would be fair to speak of OZ theory, as the OZ formula is only one the
outputs of the articles to be cited in this introduction) has a very long and rich history. The
above-mentioned asymptotic formula was first conjectured in two very influential works
by Ornstein and Zernike in 1914 [101], and Zernike [114]. Trying to correct a formula
describing the phenomenon of opalescence in a crystal, they provided a non-rigorous
computation of what would later become the OZ formula. Later on, Abraham and Kunz [2]
and Paes–Leme [104] independently were able to derive the first rigorous implementation of
Ornstein and Zernike’s reasoning, in the context of classical lattice gases theory, by means
of a graphical representation of the partition function of the model. The Ornstein–Zernike
result for the order of decay of the correlations has then been shown to be true for a number
of models in a perturbative regime, see [17, 97].

The next breakthrough consisted in a rigorous derivation of the Ornstein–Zernike asymptotic
result in the whole regime of exponential decay of the correlation functions, and was done in
the case of the self-avoiding walk along a direction given by the axis in [34] and later on
in any direction in [82]. For percolation models, the case of Bernoulli percolation was first
treated for an on-axis direction in [21] and later on in any direction in [22]. The case of
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subcritical Ising models was treated in [24] via the random-line graphical representation of
the two-point correlation function. Finally, the analysis was carried out for all the subcritical
random-cluster measures in [25]. In recent developments, the theory has been extended to
Ising models with long-range interactions [10], and a new direction of research has been
studied regarding the failure of Ornstein–Zernike behaviour in some long-range Ising models,
when the coupling constants decay too slowly [8, 9].

All those works are concerned with the understanding of the two-points correlations at a
fixed temperature. In this article, we are interested in the way in which the OZ formula
behaves when the temperature parameter (p in the random-cluster model) approaches its
critical value, in the planar setting. In particular, its principal output is the derivation of the
asymptotic behaviour of the function x 7→ G(x) uniformly both in p and x, in the regime
p < pc and x going to infinity. When p = pc and q ∈ [1, 4] in the random-cluster model, the
phase transition is known to be continuous and the function G behaves like a polynomial in
∥x∥. The analysis carried out in this article and the main result derived allow to understand
how the two-points correlation function switches from a disordered behaviour (caracterised
by its exponential decay in ∥x∥) to a near-critical behaviour in which the correlations start to
decay at a polynomial speed.

The interest of this work is twofold. First, the result is of interest, as it may allow to understand
the structure of the correlations in continuous fields constructed as near-critical limits of two
dimensional statistical mechanics models (in particular one may think about the so-called
planar Ising magnetisation field, constructed in [19, 20]); this will be the subject of further
investigation. It is also an opportunity to revisit the approach to Ornstein–Zernike theories
instigated in the last decades by the above-mentioned authors. Indeed, while our approach
roughly follows the lines of [25], several differences may be highlighted. We circumvent
the use of the “skeleton calculus” developed by the authors by analysing the structure of the
percolation cluster at some fixed length scale L of order of the correlation length. Moreover,
and this is the key contribution of this work, we replace all the arguments relying on finite
energy type properties at the scale of the correlation length (which are non-uniform when
p ↗ pc) by the box-crossing property given by near-critical RSW theory, and show that
the latter is sufficient to obtain the mixing property needed in order to extract the random
walk-type behaviour of the subcritical cluster.

We close the introduction by mentioning that the closely related question of understanding
the behaviour of the Wulff crystal of the Ising model when β ↘ βc was raised in [30]. In
this work, the authors proved that the Wulff construction remains valid when both the size
of the box goes to infinity and the inverse temperature goes to βc. In the context of the
random-cluster model, our work allows to improve their result all the way up to the critical
exponent ν = 1, as the planar Ising model is integrable and all its critical exponents have
been computed explicitly.

184



5.1. INTRODUCTION

5.1.1 Definition of the model

We briefly define the model together with the basic notions that shall be used extensively in
this article. We refer to the monographs [70, 49] for further background on the model.

This work is concerned with the planar random-cluster model. From now on, the dimension of
the lattice will be fixed and equal to 2. We slightly abuse notation by writingZ2 = (Z2, E(Z2))
for the square lattice. ForG = (V (G), E(G)) a finite subgraph ofZ2, the space of percolation
configurations on G is ΩG := {0, 1}E(G). For an edge e ∈ E(G) and ω ∈ ΩG, we say that e
is open if ω(e) = 1 and closed else. A percolation configuration will be identified both with
the set of its open edges as well as with the sub-graph ofG with vertex set V (G) and edge-set
formed of the open edges of ω. In particular, we say that x, y ∈ V (G) are connected in ω
if there exists a sequence of vertices x = x1, . . . , xk, xk = y such that for any 1 ≤ j < k,
∥xj+1−xj∥ = 1 and the edge {xj , xj+1} is open in ω. The maximal connected components
for this notion of connectivity shall be called open clusters of ω.

The boundary ∂G ofG is the set of vertices ofG incident to at least one edge ofE(Z2)\E(G).
A boundary condition η is a partition of ∂G; we say that the vertices of ∂G that belong to
the same component of η are wired together. To a boundary condition η and a percolation
configuration ω ∈ {0, 1}E(G), associate the percolation configuration ωη which is obtained
by identifying all the mutually wired vertices of ∂G.

A percolation configuration ξ on Z2 induces certain boundary conditions on ∂G: two vertices
are wired together if the•y are connected in ξ \ E(G). We shall make a slight notational
abuse by identifying the percolation configuration ξ with the boundary condition it induces
on ∂G, and keeping the notation ωξ when ξ is a percolation configuration on Z2 \G. Two
boundary conditions play a special role: the free boundary conditions, denoted by 0, are those
where no boundary vertices are wired together; in the wired boundary conditions, denoted by
1, all boundary vertices are wired together.

The random cluster measure on a finite subgraphGwith boundary conditions η and parameters
p ∈ [0, 1] and q ≥ 1 is defined as follows. For a percolation configuration ω on G write
o(ω) for number of open edges of ω, and call k(ωη) the number clusters of ωη. For any
percolation configuration ω on G set

ϕηG,p,q[ω] =
1

ZηG,p,q

(
p

1− p

)o(ω)
qk

η(ω),

where,ZηG,p,q is called the partition function of the model, and is the only constant guaranteeing
that ϕηG,p,q is a probability measure.

Random-cluster measures may also be defined on the full graph Z2 either through the DLR
formalism or by taking limits of measures on increasing finite subgraphs of Z2. Due to
monotonicity properties, it is classical that the free and wired measures ϕ0G,p,q and ϕ1G,p,q
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admit limits as G increases to Z2. These will be denoted ϕ0p,q and ϕ1p,q and are instances of
infinite volume measures.

It was proved in [13] that the model exhibits a phase transition at the self-dual parameter
pc(q) =

√
q

1+
√
q . That is, for any p < pc(q) (in the so-called subcritical regime), there exists a

unique infinite volume measure (ϕ0p,q = ϕ1p,q) and connected components are almost surely
finite. When p > pc(q), the infinite volume measure is unique and contains almost surely
a unique infinite connected component. The phase transition was shown to be continuous
for q ∈ [1, 4] [53], in the sense that there exists a unique infinite-volume measure also
at p = pc(q). Furthermore, RSW-type estimates are known to hold with that specific
choice of parameters. For q > 4, the phase transition is discontinuous [50], which is to
say that ϕ0pc(q),q ̸= ϕ1pc(q),q, with the former having a sub-critical behaviour and the latter a
super-critical one.

For the exposition of our results, we need to introduce two classical quantities in the
study of subcritical and near-critical random-cluster model. Fix p < pc. The correlation
length of the model is defined as the following limit, the existence of which is based on
super-multiplicativity arguments. For v⃗ ∈ R2 \ {0}, set1

ξp(v⃗) =
(
lim
n→∞

− 1
n log ϕp[0←→ ⌊nv⃗⌋]

)−1
.

Notice that

∥v⃗∥ξp(v⃗) = ξp(v⃗/∥v⃗∥),

so we will mostly consider the case v⃗ ∈ S1. The results of [13] imply that whenever p < pc,
ξp(v⃗) > 0 for any v⃗ ∈ S1.

We also introduce the so-called critical one-arm probability. For any R ≥ 0, define
ΛR := {−R, . . . , R}2. Introduce the function π as follows:

π1(R) = ϕ0pc(q),q[0←→ ∂ΛR].

As opposed to the correlation length, this quantity is computed at pc: it is reminiscent of the
behaviour of the connection probabilities at criticality.

5.1.2 Results

We are now ready to introduce our main results. For positive quantities f, g we write f <⌢ g
to mean that there exists a constant C > 0 such that f ≤ Cg. The constants C may be chosen
uniformly in certain parameters in the definitions of f and g which will be explicitly stated
– these will generally be p < pc, n and t below. Write f ≍ g when f <⌢ g and g <⌢ f . We
will often use the expression uniformly in p < pc to mean uniformly for p ∈ [ε, pc) for some

1⌊nx⌋ denotes the vertex of Z2 which is the closest to nx.
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ε > 0 fixed throughout the paper. The choice of ε is arbitrary, but may affect the value of
certain constants.

Theorem 5.1.1 (Ornstein–Zernike asymptotics at the scale of the correlation length). Fix
q ≥ 1. Then, uniformly in v⃗ ∈ S1, n ≥ ξp(v⃗) and p < pc,

ϕp
[
0←→ ⌊nv⃗⌋

]
≍ π1(⌊ξp(v⃗)⌋)2

√
ξp(v⃗)
n e

− n
ξp(v⃗) . (5.1)

Compared to the classical OZ results of [25], the advantage of our result is that it is uniform in
p. Indeed, for q ∈ [1, 4], ξp(v⃗)→∞ as p↗ pc. Previous results often employ local surgeries
based on finite energy at scales lower than ξp(v⃗). As such they do not apply when ξp diverges.
Our approach blends the critical and sub-critical behaviour, each accounting for one of the
terms in the right-hand side of (5.1): the term e

− n
ξp(v⃗) ( n

ξp(v⃗)
)−1/2 is reminiscent of classical

OZ-type formulas and is entirely a sub-critical phenomenon, while the term π1(⌊ξp(v⃗)⌋)2
appears due to the near-critical behaviour of the model. Finally, when n ≤ ξp(v⃗), the
right-hand side may be replaced by π1(n)2, as proved in [51].

Theorem 5.1.1 is a consequence of a more detailed description of the cluster of 0 when
conditioned to be connected to a half-plane at a distance n in the direction w⃗, dual to v⃗;
see Theorem 5.3.2 below. We would like to emphasise that Theorem 5.3.2 also has other
consequences, such as:

• Theorem 5.4.1, stating that the probability for the cluster of 0 to reach the half-space
{⟨x, w⃗⟩ ≥ n} is pure exponential in n.

• Theorem 5.4.8, stating that the inverse correlation length ξ−1
p is strictly convex, so as

its convex dual, known as the Wulff shape.

• Theorem 5.4.9, establishing an invariance principle for the cluster of 0when conditioned
to be connected to ⌊nv⃗⌋ or to a half-plane.

Contrary to previous approaches, Theorem 5.3.2 provides all these consequences simultane-
ously.

5.1.3 Overview of the proof

The idea of the proof is to slice the plane with lines orthogonal to w⃗ for some w⃗ ∈ S1, at
regular intervals of length comparable to ξp. We call these lines hyperplanes, as they should
have co-dimension 1 in the more general d-dimensional setting. For simplicity, imagine
w⃗ = e1 is the horizontal unit vector.

The cluster of 0 is then explored from left to right in a Markovian way: write Xk for the
highest point of the exploration of the cluster when intersected with the kth hyperplane.
When no such intersection exists, write Xk = † and we say that Xk dies. We will show that
the process (Xk)k has a certain renewal structure, even when conditioned on surviving for n
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steps. As such, the process is decomposed into irreducible pieces and behaves essentially as
a random walk, with all consequences following by standard tools.

The ideas are similar to the previous works [25], but we believe are rephrased in a different
way. The decomposition of the cluster in irreducible pieces, and ultimately seen as a random
walk, appeared already in these works. However, we do not use the “diamond decomposition”
and prove directly that renewal times appear often along the cluster.

5.2 Background on the random-cluster model

Here we recall a few well-known properties of the random-cluster measure, previously
introduced in Section 5.1.1. We also review some recent results of [51] about the near-critical
regime of FK percolation.

Monotonicity properties. The set of percolation configurations on Z2 can classically
be equipped with the partial order defined as follows. If ω and ω′ are two percolation
configurations, we declare that ω ≤ ω′ if for any e ∈ E(Z2), ω(e) ≤ ω′(e). An event A is
said to be increasing if for any two percolation configurations ω ≤ ω′, ω ∈ A ⇒ ω′ ∈ A.
Set q ≥ 1, p ∈ [0, 1] and G a subgraph of Z2. The FKG inequality asserts that for any A,B
increasing events, and any boundary condition η on G,

ϕηG,p,q[A ∩ B] ≥ ϕ
η
G,p,q[A]ϕ

η
G,p,q[B].

The random-cluster measure also displays the following monotonicity property. If ξ ≤ ξ′

are boundary conditions on G (the order is defined by the usual partial order on the set of
partitions of a given subset), then for any increasing event A,

ϕξG,p,q[A] ≤ ϕ
ξ′

G,p,q[A].

Domain Markov property. Let G be some subgraph of Z2. Fix q ≥ 1 and p ∈ (0, 1). Let
G′ = (V ′, E′) be a subgraph of G. Then for any boundary condition η on G, any percolation
configuration ξ ∈ {0, 1}E\G′ ,

ϕηG,p,q[·G′ | ωE\E′ = ξ] = ϕξ
η

G′,p,q[·], (DMP)

where ξη is the boundary condition induced on the complement of G′ by ξ together with the
boundary condition η.

Duality. Consider the dual graph (Z2)∗ with vertex set V (Z2) + (1/2, 1/2) and edge set
{i+ (1/2), j + (1/2)}, for i, j such that {i, j} ∈ E(Z2). To any percolation configuration
on Z2 we associate its dual configuration, defined on the graph (Z2)∗ by setting ω∗(e) =
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1 − ω(e∗), where e∗ is the unique edge of (Z2)∗ that crosses e. It is classical that when
ω ∼ ϕ0p,q then ω∗ ∼ ϕ1p∗,q, where p and p∗ are linked by the following duality relation:

pp∗ = q(1− p)(1− p∗),

Note that the value psd :=
√
q

1+
√
q is the unique solution of p = p∗, and coincides with the

critical parameter pc as first proved in [13].

5.2.1 Near-critical theory

The near-critical regime of the random-cluster model is the set of parameters n and p for
which n is sufficiently small or p sufficiently close to pc so that the system behaves critically at
scale n. It is expected, and is indeed the case for the two dimensional random-cluster model,
that the system behaves critically in the near-critical regime, and sub- or super-critically
outside of it.

The rigorous understanding of the near-critical regime of percolation models in two dimensions
started with Kesten’s seminal work on Bernoulli percolation [91]. Kesten’s results were
adapted to the random-cluster model on Z2 with q ∈ [1, 4] in [51]. Here we will mention
only the consequences of these works that are relevant to us.

For q ∈ [1, 4] fixed and p < pc, set

L(p) = inf{n ≥ 0 : ϕp[Cross(Λn)] /∈ [δ, 1− δ]},

where Cross(Λn) is the event that Λn contains an open path crossing it from left to right and
δ > 0 is some small fixed quantity.

It was proved in [51] that, for any v⃗ ∈ S1,

L(p) ≍ ξp(v⃗)

uniformly in p < pc, for q ∈ [1, 4] . Additionally, the RSW property was extended to the
near-critical regime.

Let Circ(r,R) be the event that ΛR contains an open circuit surrounding Λr. Write
Circ∗(r,R) for the event that the dual configuration contains such a circuit, which for the
primal model translates to Λr not being connected to ∂ΛR.

Proposition 5.2.1 (RSW in the critical window). Fix q ∈ [1, 4]. There exists c > 0 such that
for any p < pc and n ≤ L(p)

c ≤ ϕ0Λ2n,p[Circ(n, 2n)] ≤ 1− c and c ≤ ϕ1Λ2n,p[Circ
∗(n, 2n)] ≤ 1− c. (5.2)

Finally, the most significant contribution of [51] was to prove the stability of the arm event
probabilities in the near-critical regime.
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CLUSTER

Theorem 5.2.2. Fix q ∈ [1, 4]. Then

ϕξΛ2R,p
[0←→ ∂ΛR] ≍ π1(R), (5.3)

uniformly in p < pc, R ≤ L(p) and any boundary conditions ξ on ∂Λ2R

Henceforth we will use L(p) rather than ξp(v⃗) to designate a quantity of the order of the
correlation length, for instance when referring to the interspacing of the hyperplanes used to
define the process (Xn)n. We do so to emphasise that its use is not related to the direction v⃗
and is only important up to a bounded multiplicative constant.

5.3 Coarse renewal structure of a long subcritical perco-
lation cluster

The key idea of the article is to show that a subcritical cluster admits what we call a “killed
renewal structure”, even when conditioned to hit a far-away half-plane. We start by defining
a class of processes which will have random-walk like behaviour.

Definition 5.3.1. A stochastic process (Xt, Yt)t∈N ∈ (R ∪ {†} × {0, 1})N is called a killed
Markov renewal process (KMRP in short) with respect to some filtration (Ft)t∈N if

• It is adapted to (Ft)t∈N;

• If Xt = †, then Yt = 0 and Xt+1 = †;

• If we set T0 = 0 and Tk+1 = inf{t < Tk : Yt = 1}, then for any k ≥ 1, the future of
the process (Xt+Tk −XTk , Yt+Tk)t∈N conditionally on FTk and XTk ̸= † has a fixed
law L.

We say that the process has exponential tails with constants cT , cX > 0 if for all k, t ≥ 0

P[n < Tk+1 − Tk <∞|FTk , Tk <∞] ≤ exp(−cT n) and
P[XTk+j ̸= † and |XTk+j −XTk | ≥ n | FTk , Tk <∞] ≤ exp(−cX n/j) ∀n ≥ 1.

We say that the model exhibits a mass gap of at least ε > 0 if for any k and 0 ≤ t ≤ n,

P[Tk+1 ≥ Tk + t|FTk , XTk+n ̸= †] ≤ C exp(−εt). (5.4)

for some C > 0.

For such a process, and for k ≥ 1, call the laws of XTk+1
−XTk and Tk+1−Tk conditionally

on Tk ̸=∞ the X-step and the T -step (or vertical and horizontal steps, respectively). Notice
that these only depend on the law L mentioned above, and therefore do not depend on k.
Define the X-step mean and variance as

µX := E[XTk+1
−XTk |Tk+1 <∞] and σX := Var[XTk+1

−XTk |Tk+1 <∞]
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also define the T -step mean and the killing rate as

µT := E[Tk+1 −XTk |Tk+1 <∞] and κ := P[Tk+1 =∞|Tk <∞].

We will now describe how such general processes are related to the cluster of 0 under different
conditionings.

Fix w⃗ ∈ S1, q ∈ [1, 4] and p < pc. For all practical purposes, think of w⃗ as the unit vector
in the horizontal direction, pointing to the right; this is only so that the vocabulary and
illustrations below make sense. Define the half-spaces

Hw⃗≤t = {x ∈ R2 : ⟨x,w⟩ ≤ t L(p)} and Hw⃗≥t = {x ∈ R2 : ⟨x,w⟩ ≥ t L(p)}.

Call ∂Hw⃗≤t = ∂Hw⃗≥t = {x ∈ R2 : ⟨x,w⟩ = t L(p)} a hyperplane. In the following we will
use an arbitrary integer approximation of these objects, which we do not detail. We will
mostly work with w⃗ fixed, and will omit it from the notation whenever no ambiguity is
possible.

Write C for the cluster of 0 and C≤t for the cluster of 0 in ω∩H≤t. Note that this is contained
in, but not always equal to C ∩H≤t. For any t ∈ Z, set

Xt := max
{
h ∈ R : tL(p) · w⃗ + h · w⃗⊥ ∈ C≤t

}
,

where w⃗⊥ ∈ S1 is a unit vector orthogonal to w⃗ (the direction of w⃗⊥ is irrelevant for now;
think of it as pointing upwards). If the set above is empty, which is to say that C does not
intersect H≥t, set Xt = †. Thus Xt is the “highest” coordinate of the intersection of C≤t
with ∂H≤t.

The main objective of this section is the following result.

Theorem 5.3.2. Fix q ∈ [1, 4]. For any p < pc and w⃗ ∈ S1 there exists an enlarged
probability space supporting a random process Yt such that (Xt/L(p), Yt) is a killed renewal
Markov process with exponential tails and mass gap, all bounded away from 0 uniformly in p
and w⃗.

Moreover, the killing rate is bounded away from 0 and 1 and the X-step variance is bounded
away from 0 uniformly in p and w⃗. Finally, the initial step survival rate satisfies

ϕp[T1 <∞] ≍ π1(L(p)) (5.5)

uniformly in p and w⃗.

The above will suffice to prove Theorem 5.1.1, as well as a large number of other properties
of sub-critical clusters. We chose to formulate it using the concept of KMRP so as to separate
the model-dependent part of the argument from the generic analysis of a class of processes
with random-walk behaviour. While the formalism is new in this context, we do not claim
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the theorem to be entirely original; indeed, the only fundamental novelty compared to [25] is
the uniformity in p < pc when q ∈ [1, 4].

We mentioned uniform lower bounds on σX , but no upper bounds. The uniform exponential
tails induce uniform upper bounds on σX , µX and µT .

Note that we do not claim that µX = 0. This is the case when w⃗ is aligned to the coordinate
axis due to symmetry, but is not generally true. As such, under the conditioning Xn ̸= †, the
cluster does not “aim” for the point nw⃗, but rather for a point nv⃗ for some v⃗ depending on w⃗
(with ⟨v⃗, w⃗⟩ = 1). The relation between w⃗ and v⃗ will yield the strict convexity of the Wulff
shape and ultimately will prove how w⃗ needs to be chosen to deduce Theorem 5.1.1 for some
direction v⃗ – see Section 5.4.3 for details.

The proof of Theorem 5.3.2 relies on a geometric analysis of C under the survival event
Xn ̸= †. The analysis is performed at a scale L(p), in particular showing that there exists a
density of points at which the cluster is confined to boxes of size L(p). Those boxes play the
role of “pre-renewal times”; indeed, it will be shown that at each pre-renewal time, there is
uniformly positive probability that the “future” cluster is sampled independently from its
past. As such, the pre-renewal times play a similar role to the cone points in [25].

We should mention that any KMRP with exponential tails and a mass-gap has a exponential
rate of survival

P[Xn ̸= †] ≍ exp(−n/ζ),

as will be proved in Section 5.4. In our context, ζ = ζ(p, w⃗) depends on p and w⃗ but is
uniformly bounded away from 0 and∞. The constants in ≍ above are not uniform in p; they
will be shown to be of order π1(L(p)) and are due to the requirement of survival up to the
first renewal time. Finally, the mass-gap states that the exponential rate of survival of a single
step is strictly smaller than ζ.

Remark 5.3.3. For KMRP with exponential tails but no mass gap a condensation phenomenon
can occur, in which the process survives by making a very large step of linear order rather
than many small steps of constant order. This was discussed in the context of long range
Ising models in [8, 9].

The rest of the section is dedicated to proving Theorem 5.3.2. Its consequences such as
Theorem 5.1.1 will be proved in Section 5.4.

For the rest of the section we will assume w⃗ to be the horizontal vector (1, 0) . This is purely
for convenience of notation and has no impact on the proof. In particular, we will never use
any symmetries of the lattice with respect to w⃗. One may imagine that the lattice is rotated
so that w⃗ is horizontal.

Define the filtration (Ft)t≥0 as generated by the variables C≤t. Later on we will extend this
filtration to also contain some independent information.
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For the rest of the section we will work with p < pc and write L = L(p) when no confusion is
possible. All constants and equivalences will be uniform in p unless otherwise stated.

5.3.1 Cone-connections

For integers t ≥ 0, k ∈ Z, define Lt,k := {tL} × [kL, (k + 1)L), so that the hyperplane
∂H≤t is the disjoint union of the line segments Lt,k when k runs over Z. Also, write
xt,k = (tL, (k + 1/2)L) for the midpoint of Lt,k.

For some α > 0 to be fixed right after, write

Y = {z ∈ R2 : |⟨z, w⃗⊥⟩| ≤ α⟨z, w⃗⟩}.

This is the cone in direction w⃗ with aperture 2 arctanα.

We now explain how to choose α. We claim that there exists αc such that for any β ∈ R such
that |β| > α√

1+α2
, there exists ε > 0 such that for any n ≥ 3,

ϕp[ΛL(0)←→ ΛL(nw⃗ + βw⃗⊥)] ≤ exp(−εn)ϕp[ΛL(0)←→ ΛL(nw⃗)]. (5.6)

In other words, reaching a box on the hyperplaneHw⃗≥n outside of the cone of opening αc is
exponentially more difficult than reaching a box in the same hyperplane, but in the middle of
the cone. The construction of αc follows by the convexity and homogeneity of ξ−1: those
are classical properties and imply that ξ−1 is a norm. Consider αc to be the opening such
that any facet of the unit ball2 is included in a cone of apex 0 and opening αc. Then (5.3.1)
will be satisfied with this choice of αc.

In what follows, we fix α to be some real number satisfying α > 2αc.

Proposition 5.3.4 (Connections in cones). There exists a constant c > 0 such that, for any
domain D ⊃ H≥0, any boundary conditions ξ on D and any k, n ≥ 1,

ϕξD,p
[
ΛL ←→ (Y − (kL, 0))c

∣∣ΛL ←→ H≥n
]
≤ e−ck. (5.7)

The lemma states that even when conditioned to reach a far away half-plane, the cluster of L0,0

will be contained in a cone with high probability. The probability approaches 1 exponentially
fast when the cone is widened (with the aperture angle remaining constant).

Proof. For this proof we will introduce the slightly thinner cone

Z = {z ∈ R2 : |⟨z, w⃗⊥⟩| ≤ 1
2α⟨z, w⃗⟩}.

Fix D, ξ, n and k as in the statement. Write C for the cluster of ΛL. Fix k ≥ 1.

2It will be shown in Section 5.4.3 that the unit ball is actually strictly convex, meaning that it has no such
facets.
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If C exits (Y − (kL, 0))c, it does so either below Y − (kL, 0) or above Y − (kL, 0). We will
bound the probability of each event separately, conditionally on C intersectingH≥n.

We start with the first case, and call ∂BY (resp. ∂BZ) the bottom boundary of the cone Y
(resp. of the cone Z). We distinguish two scenarios:

(a) There exists a connection between ΛL and H≥n not intersecting the region below
Z − (12kL, 0) or

(b) Any connection between ΛL andH≥n intersects the region below Z − (12kL, 0).

In situation (a), explore the top-most connection Γ between ΛL andH≥n. Conditionally on
Γ, the probability that a point z = (t, y) on the bottom boundary of Y − (kL, 0) is connected
to Γ is bounded above as

ϕξD,p
[
z ←→ Γ

∣∣Γ] ≤ exp(−c(t+ k)),

for some c = c(α) > 0. Summing over z we find

ϕξD,p
[
∂B(Y − (kL, 0))←→ Γ

∣∣Γ] ≤ exp(−ck),

for a possibly altered value of the constant c > 0.

We are now going to prove that situation (b) itself is exponentially unlikely. We distinguish
two subcases.

(i) ΛL is connected to a point of ∂H≥n ∩ (Z − (12kL, 0))
c.

(ii) the intersection of the cluster of ΛL and H≤n is contained within the cone (Z −
(12kL, 0)).

Case (b,(i)) is easily bounded by the choice of the angle α being larger than the greatest
facet of the Wulff shapeW . Indeed, there exists ε > 0 such that for any ℓ such that the box
Λn,ℓ := ΛL(nL, ℓL) is not in the cone (Z − (12kL, 0)),

ϕξD,p[ΛL ←→ Λℓ,n] ≤ exp(−εℓ)ϕξD,p[ΛL ←→ H≥n].

Summing over all such ℓ yields the announced exponential decay.

For case (b, (ii)), we proceed as follows. Explore the interfaces starting at vertices of
∂H≥n ∩ (Z − (12kL, 0)), inside the cone Z − (12kL, 0), from top to bottom. If case (b, (ii))
occurs together with the event {ΛL ←→ H≥n}, then this exploration needs to hit a vertex
of ∂B(Z − (12kL, 0)). We stop the exploration when this event occurs, and call Ex the
event that the exploration procedure is stopped at x ∈ ∂B(Z − (12kL, 0)). For such an x,
call Ax the line segment running from x to ∂H≥n along the bottom boundary of the cone
Z − (12kL, 0). The key observation is then that if case (b, (ii)) occurs together with the events
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Ex and {ΛL ←→ H≥n}, then it is the case that Ax needs to be connected by a primal path
to ΛL. Thus,

ϕξD[case (b, (ii)),H≥n] ≤
∑

x∈∂B(Z−(
1
2kL,0))

ϕξD[Ex]ϕ
ξ
D[Ax ←→ ΛL|Ex]. (5.8)

Fix x ∈ ∂B(Z − (12kL, 0)). We are going to bound the two factors appearing on the sum on
the right-hand side of (5.3.1) separately. Write x = (t, y), and write x̃ = (t, 0) .

We first write

ϕξD[Ex] ≤ ϕ
ξ
D[ΛL(x)←→ H≥n] ≍ ϕξD[ΛL(x̃)←→ H≥n].

For the second term, observe that pushing away the boundary conditions induced by the
exploration procedure yields

ϕξD[Ax ←→ ΛL|Ex] ≤ ϕξ̃(x)D [Ax ←→ ΛL],

where ξ̃(x) is the boundary condition defined as follows: it is induced by ξ onD, and is wired
on the bottom of the arcAx and free on its top, and wired to the right of ∂H≥n∩(Z−(12kL, 0))
and free on its left. (see figure??). We first observe that

ϕ
ξ̃(x)
D [Ax ←→ ΛL] <⌢ ϕ

ξ̃(x)
D [ΛL(x)←→ ΛL].

This is proved by splitting Ax into boxes of size L, by summing the connection probabilities
from ΛL to those boxes, and by using the exponential decay of the connection probabilities.

Now observe that due to the choice of α, writing x = (t, y),

ϕ
ξ̃(x)
D [ΛL(x)←→ ΛL] ≤ exp(−ε(t+ k))ϕξD[ΛL ←→ ΛL(x̃)].

Putting everything together we proved that

ϕξD[Ex]ϕ
ξ
D[Ax ←→ ΛL|Ex] ≤ exp(−ε(t+ k))ϕξD[ΛL ←→ ΛL(x̃)]ϕ

ξ
D[ΛL(x̃)←→ H≥n]

≤ exp(−ε(t+ k))ϕξD[ΛL ←→ H≥n],

where we used FKG inequality for the last line. We conclude by summing over the value of t.
As the same proof holds if the connection leaves the cone on its top boundary, this concludes
the proof of the statement.
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The next proposition is an extension of the usual mixing property of the subcritical random-
cluster model to some specific infinite domains.

Lemma 5.3.5. Uniformly in p < pc and in w⃗ ∈ S1, for any event A (resp. B) depending on
the edges ofH≤0 (resp. Y ∩H≥1),

ϕp[A ∩ B] ≍ ϕp[A]ϕp[B].

Proof. Let Ỹ be the cone of larger opening 2α (i.e., Ỹ = {z ∈ R2 : |⟨z, w⃗⊥⟩| ≤ 2α⟨z, w⃗⟩}).
We start by arguing that there exists η ∈ (0, 1), independent of the value of p, such that

ϕp[∂(Ỹ∩H≥1/2)←→ ∂H≤0] ≤ η and ϕp[∂(Ỹ∩H≥1/2)←→ ∂(Y∩H≥1)] ≤ η. (5.9)

Let us prove the claim of the first part of the statement, as the second part will follow by the
same argument.

For k ≥ 1, set ak = (0, 2kLα) and bk = (2k−1, 2kLα). For k ≤ −1, set ak = (0,−2−kLα)
and bk = (2−(k−1),−2−kLα). Denote by R1

k (resp. R2
k) the rhombi enclosed by the vertices

ak, ak+1, bk+1, bk (resp. ak, ak+2, bk+2, bk). Finally for a rhombus R, denote by V(R) (resp.
H(R)) the event that there exists a dual open crossing from the bottom side (resp. left side)
of the rhombus R to the top side (resp. right side) of the rhombus.

It follows by basic percolation arguments and the equivalence between the characteristic
length and the correlation length that there exists some constant c > 0 independent of p such
that for any k ∈ Z,

ϕ1
(H≥0∪Ỹ)c

[H(Rk1)] > 1− e−c2
|k|−1

and ϕ1
(H≥0∪Ỹ)c

[V(Rk2)] > 1− e−c2
|k|−1

. (5.10)

By the FKG inequality, we obtain that

ϕ1
(H≥0∪Ỹ)c

[ ⋂
k∈Z
H(Rk1) ∩ V(Rk2)

]
≥
∏
k∈Z

(
1− e−c2

|k|)2
= η > 0,

due to (5.5).

Now one may check that the occurence of
⋂
k∈ZH(Rk1) ∩ V(Rk2) prevents the occurence of

{∂(Ỹ ∩ H≥1/2)←→ ∂H≤0}. This establishes the first half of (5.4). The second part of the
statement can be proved by a similar construction.

With (5.5) in hand, the proof is now very much inspired by that of [51, Prop. 2.9]. We are
going to prove that there exists some constant η such that for any boundary conditions ξ, ψ
on ∂H≤0, ∣∣∣ϕξ(H≤0)c

[B]− ϕψ(H≤0)c
[B]
∣∣∣ < ηϕξ(H≤0)c

[B].
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This will imply the result by usual arguments, exploring the boundary conditions induced on
∂H≤0 by the occurrence of A and using (DMP).

As in [51], we fix a domain Ỹ ∩H≥1 ⊂ Ω ⊂ (H≤0)
c. We fix a boundary condition ψ on ∂Ω

. We start by comparing ϕ0Ω[B] and ϕψΩ[B]. Let us call Ψ the increasing coupling between
those two measures.

ϕψΩ[B]− ϕ
0
Ω[B] = Ψ[ω /∈ B but ω′ ∈ B]

≤ ϕψΩ[ω
′ ∈ B, ∂(Y ∩H≥1)←→ ∂Ω]

≤ ϕ1Ω\(Y∩H≥1)
[∂(Y ∩H≥1)←→ ∂Ω]ϕψΩ[B]

≤ ηϕψΩ[B],

where we used (5.4) in the last inequality.

We obtained that for any Ω as above,

ϕψΩ[B] ≤
1

1−ηϕ
0
Ω[B]. (5.11)

Observe that a consequence of this bound is that for any Ω as above, one has

ϕ0(H≤0)c
[B] =

∑
ψ b.c. on ∂Ω

ϕψΩ[B]ϕ
0
(H≤0)c

[ω induces ψ on ∂Ω] ≤ 1
1−ηϕ

0
Ω[B]. (5.12)

We follow the strategy of [51] for providing a converse bound to (5.6). For any configuration
ω inHc≥0, let Ω(ω) be the set of vertices not connected to ∂D2. Then, observe that

ϕψ(H≤0)c
[B] ≥ ϕψ(H≤0)c

[B, ∂(Ỹ ∩ H≥1/2) ↚→ ∂H≤0]

=
∑

Ỹ∩H≥1⊂Ω⊂(H≤0)c

ϕ0Ω[B]ϕ
ψ
(H≤0)c

[Ω(ω) = Ω]

≥ (1− η)ϕ0(H≤0)c
[B]ϕψ(H≤0)c

[∂(Ỹ ∩ H≥1/2) ↚→ ∂H≤0]

≥ (1− η)2ϕ0(H≤0)c
[B].

We used (5.7) on the third line and (5.4) on the fourth line. Setting η̃ := max{ 1
1−η − 1, 1−

(1− η)2}, inserting Ω = (H≤0)
c in (5.6) and combining with latter input yields:

|ϕψ(H≤0)c
[B]− ϕ0(H≤0)c

[B]| < η̃ϕ0(H≤0)c
[B].

By the triangular inequality, this yields the desired inequality up to doubling the constant η̃.
Observe that η̃ is an explicit function of the parameter η only; it is then uniform in p and in w⃗.
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Finally, we state a direct consequence of Proposition 5.3.4 and Lemma 5.3.5 that will be
useful at several stages of the paper.

Corollary 5.3.6. For any n ≥ 1 and any boundary conditions ξ onH≥0

ϕξH≥0

[
ΛL ←→ H≥n

]
≍ ϕ1H≥0

[
ΛL ←→ H≥n

]
. (5.13)

Proof. We will prove that ϕ0H≥0

[
ΛL ←→ H≥n

]
≍ ϕ1H≥0

[
ΛL ←→ H≥n

]
,which is sufficient

due to the fact that {ΛL ←→ H≥n} is increasing. As the upper bound is obvious, we focus
on the lower bound. By Proposition 5.3.4, it is the case that there exists some c > 0 such that

ϕ0[ΛL ←→ H≥n] ≥ cϕ0[ΛL ←→ H≥n|ΛL ↚→ Yc].

Now, Lemma 5.3.5 shows that

ϕ0[ΛL ←→ H≥n|ΛL ↚→ Yc] ≍ ϕ1[ΛL ←→ H≥n|ΛL ↚→ Yc],

which concludes the proof of (5.3.6) by a second application of Proposition 5.3.4.

5.3.2 The number of active boxes is subcritical

A line segment Lt,k is said to be active at time t if C≤t ∩Lt,k ̸= ∅. Write Nt for the number
of active segments at time t. Some time t for which Nt = 1 will be called a pre-renewal
times. The purpose of this section is the following.

Proposition 5.3.7 (Density of pre-renewal times). There exists c > 0 such that for any
p < pc and any t, r > 0 and n ≥ t+ r,

ϕp[Ns > 1 ∀s ∈ {t+ 1, . . . , t+ r} |Ft, Nt = 1, Xn ̸= †] ≤ exp(−cr) and
ϕp[Ns > 1 ∀s ∈ {1, . . . , r} | Xn ̸= †] ≤ exp(−cr).

This tells us that pre-renewal times arrive quickly, even when conditioning on a survival
event far in the future. Proposition 5.3.7 will follow from the result below.

Proposition 5.3.8. For C large enough, there exist constants µ < 1 and K > 0 such that for
any p < pc, any t ≥ 0 and n ≥ t+ C,

ϕp[Nt+C | Ft, Xn ̸= †] ≤ µNt +K. (5.14)

The rest of this section is dedicated to the proofs of the two results above. As mentioned,
Proposition 5.3.8 is the key step, and we start with it. First we explain how to fix the constant
C.
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Lemma 5.3.9. There exists a constant C > 0 so that for any p < pc and w⃗ ∈ S1,

sup
D
ϕ1D,p[#j such that L0,0 ↔ LC,j ] = η < 1, (5.15)

where the supremum is taken over all domains D containingH≥0.

Proof of Lemma 5.3.9. Fix a domain D containingH≥0, and some K ∈ N∗. Observe that if
the number of indices j satisfying {L0,0 ↔ LC,j} is larger than K, then there exists at least
one j0 ∈ N such that j0 ≥ ⌊K/2⌋ and L0,0 ↔ LC,j0 . For such a j0 we may lower bound the
Euclidean distance between L0,0 and LC,j0 by L

√
C2 + j20 . By the equivalence between

the characteristic length and the correlation length and a basic union bound, we obtain:

ϕ1D,p[#j such that L0,0 ↔ LC,j > K] ≤
∑

j0≥⌊K/2⌋

exp(−c
√
C2 + j20)

≤ c−1 exp(−c(C +K/2)).

for some c > 0 an absolute constant independent of the value of p and of the choice of the
domain D. Choosing C large enough so that

∑
K≥0 c

−1 exp(−c(C +K/2)) < 1 concludes
the proof.

Proof of Proposition 5.3.8. Fix the parameters p, w⃗, n and t as in the statement. Also fix
some realisation of C≤t. We will always work conditionally on this realisation of the “past
cluster”, and write ϕFt,p for this conditional measure. All notions of connections and clusters
below refer to the configuration in Cc≤t only. All constants and equivalences below are
uniform in the choices of p, w⃗, n, t and C≤t.

Fix C given by Lemma 5.3.9. Write j for the index of the top-most active box Lt,j such that
Lt,j ∩ C≤t is connected toH≥n. If no such connection exists, write j = ∅. Also write K for
the minimal value K such that the cluster of Lt,j is contained in YK := Y + xt,j − (KL, 0)
(recall that xt,j denotes the middle point of Lt,j).

Our goal is to bound

ϕp[Nt+C | j ̸= ∅] =
∑
j

ϕp[j = j | j ̸= ∅]ϕFt,p[Nt+C | j = j],

and we will do so by bounding each of the terms ϕFt,p[Nt+C | j = j] individually.

We first argue that

ϕFt,p[K > k | j = j] ≤ e−c0k (5.16)

for some constant c0 > 0 and all k ≥ 3.

We say Lt,j is a top-most seed if Lt,j ∩ C≤t is connected to ∂Λ2L(xt,j) but not to Lt,j+1 in
Cc≤t ∩Λ2L(xt,j). We also write st = ϕ1H≤0,p

[L0,0 ←→ H≥t]. We start off by estimating the
probability of j = j.
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Lemma 5.3.10 (Gluing lemma). Uniformly in p < pc, w⃗ and n, t and r

ϕFt,p[j = j] ≍ sn−t ϕFt,p[j is top-most seed ]. (5.17)

We defer the proof of the lemma to later in the section and finish that of Proposition 5.3.8.
Due to (5.3.10) we have

ϕFt,p[K > k | j = j] <⌢
ϕFt,p[K ≥ k and j = j]

sn−t ϕFt,p[j is top-most seed]

≤
ϕFt,p[j is top-most seed, Λ2L(xt,j)←→ H≥n and Λ2L(xt,j)←→ Yck]

sn−t ϕFt,p[j is top-most seed]

≤
supD,ξ ϕ

ξ
D,p[Λ2L(xt,j)←→ H≥n and Λ2L(xt,j)←→ Yck]

sn−t

<⌢ e−c0k

where the supremum in the before-last line is over all the domainsD and boundary conditions ξ
given byC≤t and the configuration inΛ2L(xt,j). The last inequality is due to Proposition 5.3.4.
This proves (5.3.2).

Now, for j fixed, by the almost sure finiteness of the cluster of 0,

ϕFt,p[Nt+C | j = j] =
∑
k≥1

ϕFt,p[Nt+C |K = k, j = j]ϕFt,p[K = k | j = j]. (5.18)

To bound ϕFt,p[Nt+C |K = k, j = j] explore first the connected component C̃ of Lt,j and
observe that it is connected to at most 2kC intervals Lt+C,ℓ, since it is contained in Yk.

Conditionally on C̃, all other active intervals Lt,ℓ are connected in C̃c to a random number
of intervals Lt+C,ℓ′ with an average at most η. Indeed, the conditioning on C̃ induces
free boundary conditions on C̃c, and (5.3.9) also applies in (C≤t ∪ C̃)c with the boundary
conditions induced by the explored edges.

We conclude that ϕFt,p[Nt+C |K = k, j = j] ≤ ηNt + 2Ck. Inserting this into (5.3.2) and
using (5.3.2) we conclude that

ϕFt,p[Nt+C | j = j] ≤ ηNt + 2C
∑
k

kϕFt,p[K = k | j = j] ≤ ηNt + 2CC0

∑
k

ke−c0k

which produces the desired result with K = 2CC0
∑

k ke
−ck <∞.

Recall that we still need to prove the “gluing estimate” (5.3.10). This is a relatively standard,
but tedious use of the RSW property (5.2).
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Proof of Lemma 5.3.10. Fix all parameters as in the lemma and Proposition 5.3.8. All
constants appearing below will be independent of these parameters. The upper bound on
ϕFt,p[j = j] is immediate, since j = j requires j to be a top-most seed and requires that
Λ2L(j) to be connected toH≥n. These two events depend on the inside of Λ2L(j) and the
outside Λ2L(j), respectively. The mixing property proved in (5.3.6) allows one to factorise
the probabilities of these two events.

We now focus on the lower bound. The idea is to show that, conditionally on j being a
top-most seed, the probability that it j = j is a uniformly positive multiple of sn−t. In
this proof we will use the notation H≥s also for s non-integer, as we will have to perform
surgeries at scales lower than L.

Fix R = L/10 and write x = xt,j for the center of the interval Lt,j . Write A for the points
of the cluster C≤t on Lt,j ; we call these the active vertices. Also write B for of the points
C≤t on Lt,ℓ with ℓ > j; these all lie on ∂H≥t, above Lt,ℓ.

Notice first that, due to (5.3.4), (5.3.6) and a standard construction using (5.2)

ϕFt,p

[
ΛR(x+ (5R,−R))

H≥t+1/2←−−−−→ ∂H≥n−t and ΛR(x+ (5R,R))
ω∗∩H≥t+1/2←−−−−−−→∞

]
>⌢ sn−t.

(5.19)

To ensure that j = j, it suffices to link the cluster ensuring the first connection above to A,
while the dual path ensuring the second connection should be used to separateA from B. One
may be tempted to assume that this occurs with positive probability due to RSW estimates
below the correlation length. Unfortunately this is generally false, but the probability of this
event will be shown to be proportional to ϕFt,p[j is top-most seed].

Let x+ and x− be the top-most and bottom-most points of A respectively. Write y− for the
bottom most point of B. Note that x+ and y− are linked by a free path of the boundary of
C≥t.

Write ∂∞Λ2R(x+) for the arc of ∂Λ2R(x+) separating x+ from∞ in Cc≤t. This contains at
least ∂Λ2R(x+) ∩H≥t. Split it into the top and bottom part, which lie above and below the
point x+ + (2R, 0), respectively.

Write Γ for the top boundary of the cluster ofA in Cc≥t. This is a path that will be indexed by
[0, 1] starting from the point x+. Since the cluster of A is a.s. finite, Γ eventually ends at x−.

When j is a top-most seed, Γ exists in Λ2L(x) without connecting A to B. We distinguish
three cases

(1) x+ and y− are at a distance larger than 2R of each-other;

(2) x+ and y− are at a distance smaller than 2R of each-other and Γ first touches
∂∞Λ2R(x+) on its bottom part, or

201



5.3. COARSE RENEWAL STRUCTURE OF A LONG SUBCRITICAL PERCOLATION
CLUSTER

(3) x+ and y− are at a distance smaller than 2R of each-other and Γ first touches
∂∞Λ2R(x+) on its top part.

Each case will be treated differently.

In the first case, explore nothing and set χ0 to be the part of the boundary of C≥t between x+
and y−. Also write z = x+ and C̃ = C≤t.

In the second and third case explore Γ up to the first time τ it touches ∂∞Λ2R(x+). Write
z for its endpoint and C̃ = C≤t ∪ Γ([0, τ ]) for the explored part. In the second case, write
χ0 for the top part of Γ([0, τ ]); while in the third case we denote by χ1 the bottom part of
Γ([0, τ ]).

In the first two cases, χ0 is accessible by a dual path in C̃c, meaning that there exists a tube of
width R/4 and length at most 100R connecting χ0 to ΛR(xt,j + (5R,R)) in C̃c. By RSW
estimates (5.2), this tube contains a dual path with positive probability, which may then be
prolonged to infinity at constant probabilistic cost (see (5.3.2)) – such a path will separate A
from B. In case (3), χ1 is accessible by a primal path in C̃c, meaning that there exists a tube
connecting χ1 to ΛR(xt,j + (5R,−R)) in C̃c. If this tube contains a path, this path may then
be linked toH≥n−t at a cost of at most sn−t (see again (5.3.2)), and therefore connect A to
toH≥n−t.

In any case, our present exploration only suffices to create the desired connection in the
primal or dual model, but not both. We will perform one more exploration which will ensure
that the second connection may also be created with positive probability. We start off with
cases (1) and (2) which will be treated in the same way.

Cases (1) and (2): Define the region Λ′ as Λ′ = ΛR(z) in case (1) and, in case (2), as the
union of ΛR(u) for u in the bottom part of ∂∞Λ2R(x+). Write ∂∞Λ′ for the arc of ∂Λ′

separating z from ∞ in C̃c. Finally, split ∂∞Λ′ at x+ + (3R, 0) into its top and bottom
sections – see Figure ??. Consider now τ ′ as the first time after τ when Γ touches ∂∞Λ′. We
distinguish two sub-cases

(a) Γτ ′ is in the top part of ∂∞ΛR(z) or

(b) Γτ ′ is in the bottom part of ∂∞ΛR(z).

In case (a), write χ1 for the wired arc of Γ[0,τ ′]. Notice that χ1 is accessible by a primal path
and χ0 is accessible by a dual path, both in (C̃∪Γ[0,τ ′])

c, and the tubes used for each of them
may be taken disjoint.

In case (b) a more complicated construction is needed. Write Γ̃ for the exploration path
starting at x+, leaving vertices connected to A in Cc≤t on its left (including those of A, but
not other vertices of C≤t), and all other vertices on the right. See Figure ?? for an illustration.
Write τ ′′ for the first time this path touches ∂∞ΛR(z); Figure ?? shows why such a time
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exists when j is a top-most seed, and why Γ̃τ ′′ is “below” Γτ ′ on ∂∞ΛR(z). It follows that
the wired arc χ1 of Γ̃[0,τ ′′] is accessible in C̃c.

Notice that we do not claim that χ1 is accessible when Γ[τ,τ ′] has been explored. Thus, one
should make a choice at the time stopping time τ whether to continue exploring Γ up to time
τ ′ or whether to explore Γ̃ up to time τ ′′.

Notice however that either

ϕp
[
case (a)

∣∣ case (1) or (2), Γ[0,τ ] and j top-most seed
]
≥ 1/2 or

ϕp
[
case (b)

∣∣ case (1) or (2), Γ[0,τ ] and j top-most seed
]
≥ 1/2.

If (a) is more probable, then explore Γ up to time τ ′. If this corresponds to case (a), define χ1

as above, otherwise define χ1 = ∅. If (b) is more probable, explore Γ̃ up to time τ ′′. If the
wired part of Γ̃[0,τ ′′] is indeed accessible, denote it by χ1; otherwise define χ1 = ∅.

Our analysis proves that

ϕp
[
χ0 and χ1 ̸= ∅

∣∣ case (1) or (2) and j top-most seed
]
≥ 1/2,

and (5.2) ensures that

ϕFt,p[j = j
∣∣ case (1) or (2) and j top-most seed

]
>⌢ sn−t.

Cases (3): This case is treated similarly to case (2), except that the goal is now to define χ0.
Set Λ′ to be the union of ΛR(u) for u in the top part of ∂∞Λ2R(x+). Define ∂∞Λ′ and its
top and bottom sections similarly to how this was done in case (2).

Define sub-cases (a) and (b) depending on where Γ exits Λ′; set τ ′ to be the exit time. If it is
more likely to exit on the bottom part, define χ0 as the free (top) side of Γ[τ,τ ′]. If it is more
likely to exit on the top part, start an exploration Γ̃ from x+ leaving wired on the left and free
on the right (this exploration runs along ∂C≤t up to y−, and continues at least up to ∂Λ2L(x)
when j is a top-most seed). Define then χ0 as the free side of Γ̃ up to the first exit time ∂∞Λ′.

The same type of analysis as above shows that

ϕFt,p[j = j
∣∣ case (3) and j top-most seed

]
>⌢ sn−t.

We finally turn to the proof of Proposition 5.3.7, which follows by a standard martingale
argument.
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Proof of Proposition 5.3.7. Assume C > 0 is chosen large enough for Proposition 5.3.8
to hold. For the sake of simplicity, we argue as if C = 1. The general proof follows
by considering the process NCt instead of Nt. Fix p < pc and t < n two integers. Set
ℓ = K/(1 − µ), and observe that ℓ > 0 is the unique real number satisfying the relation
ℓ = µℓ+K. Also call ℓ̃ = ⌊ℓ⌋+ 1 ∈ N and ε = ℓ̃− ℓ > 0. Our first target estimate is the
following: if Nt > ℓ and t+R ≤ n, then we are going to prove that

ϕp[Nt+s > ℓ,∀s ∈ {1, . . . , R}|Xn ̸= †, Nt] <⌢ Ntµ
R. (5.20)

Set Ms := Nt+s − ℓ, observe that it follows from (5.8) that

ϕp[Ms+1|Ms, Xn ̸= †] ≤ µMs. (5.21)

Iterating this relation we obtain that

ϕp[Ms+1|M0, Xn ̸= †] ≤ µsM0.

Let τ := min{s ≥ 0,Ms ≤ 0}, and consider the process M̃s := Ms∧τ ∧ 0. An easy
computation shows that (5.10) also holds for the process M̃ , and that this process is
non-negative. By Markov’s inequality we get that

ϕp[Nt+s > ℓ,∀s ∈ {1, . . . , R}|Xn ̸= †, Nt] = ϕp[Nt+s ≥ ℓ̃,∀s ∈ {1, . . . , R}|Xn ̸= †, Nt]

= ϕp[Ms > ε,∀s ∈ {1, . . . , R}|Xn ̸= †, Nt]

= ϕ[M̃R > ε|Xn ̸= †, M̃0]

≤ ε−1M̃0µ
R = ε−1M0µ

R

This establishes (5.9), in the case in which Nt > ℓ.

We are going to deduce that the excursions of N outside of the set {t ∈ {1, . . . , r}, Nt ≤ ℓ}
are typically small. Indeed, write

ϕFt,p[Ns > ℓ,∀s ∈ {t+ 1, . . . , t+ r}|Nt ≤ ℓ,Xn ̸= †]
≤ ϕFt,p[Ns > ℓ,∀s ∈ {t+ 1, . . . , t+ r}|Nt+1 ≤ rℓ,Nt ≤ ℓ,Xn ̸= †]

+ ϕFt,p[Nt+1 > rℓ|Nt ≤ ℓ,Xn ̸= †].

Due to (5.9), the first summand is upper bounded by rℓµr.

For the second summand, observe that due to Proposition 5.3.4,

ϕFt,p[Nt+1 > rℓ|Nt ≤ ℓ,Xn ̸= †] ≤ exp(−cr).

We finally obtain that there exists a possibly different value of c > 0 such that:

ϕp[Nt+s > ℓ,∀s ∈ {1, . . . , r}|Xn ̸= †, Nt] ≤ exp(−cr). (5.22)
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We then prove the following: “finite energy”-type property: there exists η > 0 such that for
any t ≤ n,

ϕp[Nt+1 = 1|Nt ≤ ℓ,Xn ̸= †] ≥ η. (5.23)

The proof of this item is very similar to that of Proposition 5.3.8, and we shall be quite
synthetic about it. Condition on the event {j = j}, as in the proof of Proposition 5.3.8. On
the event that Lt,j only has one child, it easy to conclude by exploring the cluster of Lt,j ,
and observe that it induces free boundary conditions on the remainder of the space. As
there are at most ℓ− 1 active boxes which clusters need to be explored, the probability that
each one dies before reachingH≥t+1 can be lower bounded by εℓ−1, where ε is a constant
independent of p.

Next, we prove that there exists an absolute η such that

ϕFt,p[N(j) = 1|j = j] ≥ η > 0,

where we denoted by N(j) the number of line segments activated by Lt,j .

We write

ϕFt,p[N(j) = 1|j = j] =
ϕFt,p[N(j) = 1, j = j]

ϕFt,p[j = j]

>⌢
ϕFt,p[N(j) = 1, j = j]

sn−tϕFt,p[j is a top-most seed]
,

where the upper bound for the denominator is just an inclusion of events and mixing. It
remains to prove that:

ϕFt,p[N(j) = 1, j = j] ≍ sn−tϕFt,p[j is a top-most seed].

Looking back to the proof of Lemma 5.3.10, it is easy to modify the RSW construction to
ensure that the connection from Lt,j intersects the hyperplane ∂H≤t+1 only along a segment
of length L. We refer to the proof of Lemma 5.3.10 for details.

Thanks to this input together with (5.11), we are able to conclude. Indeed, we start with the
first bit of Proposition 5.3.7. Remember that (5.11) shows that the durations of the excursions
outside of the level set {s ∈ {1, . . . , r}, Nt+s ≤ ℓ} are stochastically dominated by a family
of independent and identically distributed exponential random variables of parameter e−c.
Fix α > 1

1+e−c . We first write, thanks to (5.12):

ϕFt,p[Ns > 1 ∀s ∈ {t+ 1, . . . , t+ r} |Nt = 1, Xn ̸= †]
≤ (1− η)αr + ϕFt,p[|{s ∈ {1, . . . , r}, Nt+s > ℓ}| > αr|Nt = 1, Xn ̸= †]
≤ (1− η)αr + exp(−c(α)r),
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where c(α) is an absolute constant coming from the law of large numbers for the family of
exponential random variables of parameter e−c.

This proves the first item of Proposition 5.3.7.

The proof of the second item is very similar to the one of the first. It is sufficient to prove that
ϕp[N0 > k|Xn ̸= †] ≤ e−ck for some constant c > 0, and the same proof follows mutatis
mutandi. We use a reasoning similar to that of the proof of Proposition 5.3.8. Indeed, we
claim that a standard RSW construction implies that

ϕp[0←→ Hw⃗≥n] ≍ ϕp[0←→ ∂ΛL]sn−t.

Together with this “gluing lemma”, we can repeat the same proof as the one of Proposition 5.3.8
to get that

ϕp[K > k|0←→ Hw⃗≥n] ≤ e−ck.

In particular, we obtain that ϕp[N0 > k|Xn ̸= †] ≤ e−ck, which concludes the proof.

5.3.3 Uniform mixing when Nk = 1

We now prove that the process Xk satisfies a mixing property when Nk = 1.

Write C≥t = C \ C≤t and Cs≤.≤t = C≤t \ C≤s for 0 ≤ s ≤ t. For n ≥ 1 let Ln be the law
of the cluster of L0,0 under the measure ϕ1H≥0,p

[·|L0,0 ←→ H≥n]. When writing C under
the measure Ln, we refer to the cluster of L0,0.

We are now ready to prove the main decoupling estimate.

Proposition 5.3.11. There exists η > 0 such that for any p ≤ pc, 1 ≤ t ≤ n and any
realisation χ of C≥1/2 contained in Y − (L, 0) (where C≥1/2 is sampled according to Ln−t),

ϕp
[
C≥t+1/2 = χ+Xt

∣∣Ft, Nt = 1, Xn ̸= †
]
≥ ηLn−t[C≥1/2 = χ], (5.24)

where χ+Xt is the translation of χ by Xt.

Moreover, for any 1 ≤ s < t ≤ n and any possible realisation ζ of Cs≤.≤t such that Nt = 1,
if χ is contained in Y − ( t−s2 L, 0)∑

χ

∣∣∣ϕp[C≥t = χ+Xs | Ft, Ns = 1,Cs≤.≤t = ζ +Xs, Xn ̸= †]

−Ln−s[C≥t−s = χ |C≤t−s = ζ]
∣∣∣ ≤ e−η(t−s). (5.25)

The first inequality, together with Proposition 5.3.4 states that at every pre-renewal time,
there is a positive probability that the future is sampled independently of the past, therefore
creating a true renewal. It is tempting to think that this implies that a positive proportion of
pre-renewals are actual renewals, thus proving Theorem 5.3.2. Unfortunately this is not the
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case, hence the need for the second part of the proposition, which states that if the clusters
sampled according to ϕp[. | Fs, Ns = 1, Xn ̸= †] and Ln−s are coupled for t− s steps, then
the probability that they couple the rest of the process is exponentially close to 1. Crucially,
the value of η > 0 may be chosen uniformly in p, the direction w⃗ as well as in t, s and n and
the realisation of the cluster up to t.

Remark 5.3.12. Note that (5.13) does not make a statement about the whole “future”
of C, but rather about the future after a buffer zone of width L/2. We call Ct≤.≤t+1/2

the “link”. Thus (5.13) states that for cone-contained futures, their probabilities under
ϕp
[
.
∣∣Ft, Nt = 1, Xn ̸= †

]
are comparable to their probabilities under Ln−t, and therefore

only have a limited dependence on Ft. This statement does not apply to the link, which does
depend strongly on Ft.

This is a crucial difference with [25], where the link is trivial due to the use of cone points.

The rest of the section is dedicated to proving Proposition 5.3.11.

Proof of Proposition 5.3.11. We start with the proof of (5.13), which is the most compli-
cated property. Recall that we write Ln−t for the law of the cluster C of L0,0 under
ϕ1H≥0

[. |L0,0 ←→ H≥n−t].

For a possible realisation χ of C≥1/2, write ∂0χ as the set of vertices not contained in χ but
adjacent to it and which are connected inH≥1/2. Write ∂1χ for the vertices of χ ∩ ∂H≥1/2

Then

Ln−t[C≥1/2 = χ] = 1
Z(L)ϕ

1
H≥0

[ω(e) = 1 for e ∈ χ and ω(e) = 0 for e ∈ ∂χ ∩H≥1/2]

· ϕσH≥0\χ[L0,0 ⇔ χ],

where σ is the boundary condition which is free on ∂0χ, wired on ∂H≥0 and induced by the
connection in χ on ∂1χ; Z(L) is a normalising constant ensuring that Ln is a probability
measure. We used the notation⇔ to indicate that all connected components of χ should be
connected together and to L0,0, but should not connect to any other point ofH≥1/2.

Similarly, if we set D = ((C≤t ∪ (χ+Xt))
c

ϕp
[
C≥t+1/2 =χ+Xt

∣∣Ft, Nt = 1, Xn ̸= †
]

= 1
Z(Ft)

ϕp
[
ω(e) = 1 for e ∈ χ+Xt and ω(e) = 0 for e ∈ ∂(χ+Xt) ∩H≥t+1/2

]
·ϕσD[C≤t ⇔ χ],

where σ is the boundary condition on D defined as above on ∂0χ+Xt and ∂1χ+Xt and
are wired on all vertices of C≤t ∩ ∂H≤t and free on ∂C≤t ∩H≤t. The normalising constant
Z(Ft) ensured that the above is a probability measure.
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We now claim that, when χ ⊂ Y − (L, 0)

ϕp
[
ω(e) = 1 for e ∈ χ+Xt and ω(e) = 0 for e ∈ ∂(χ+Xt) ∩H≥t+1/2

]
≍ ϕ1H≥0

[ω(e) = 1 for e ∈ χ and ω(e) = 0 for e ∈ ∂χ ∩H≥1/2] and (5.26)

ϕσD[C≤t ⇔ χ]

≍ ϕσD[C≤t ←→ H≥t+1/4]ϕ
σ
H≥0\χ[L0,0 ⇔ χ]. (5.27)

Indeed, (5.3.3) is a direct consequence of Lemma 5.3.5. The second relation (5.3.3) is more
complicated. It should be understood as stating that connecting C≤t to χ is comparable to
the product of the probabilities for C≤t and χ to be connected to distance L/4, with χ being
connected in the sense of⇔. Indeed, once these connections are established, one may prove
that C≤t and χ connect with positive probability. To do this, one should perform a particular
exploration very similar to that used in the proof of Proposition 5.3.8. Notice that here the
connection to C≤t is easier to establish, as it does not need to avoid any active vertices.
The connection to χ is more delicate, as it requires all connected components of χ to be
connected, but to not connect to any other point ofH≥1/2. This last requirement complicates
the construction slightly, but not in any fundamental way. We will not give further details of
this argument here.

Finally, the same reasoning implies that to be connected to distance L/4 may be shown to be
comparable to

ϕσH≥0\χ[∂H≤t+1/4 ⇔ χ] ≍ ϕσH≥0\χ[L0,0 ⇔ χ].

In conclusion, for χ contained in Y − (L, 0) we find

ϕp
[
C≥t+1/2 = χ+Xt

∣∣Ft, Nt = 1, Xn ̸= †
]

Ln−t[C≥1/2 = χ]
≍ Z(L)
Z(Ft)

ϕσD[C≤t ←→ H≥t+1/4](5.28)

Since both measures on the left-hand side assign positive mass to χ ∈ Y − (L, 0) (see
Lemma 5.3.4) we conclude that

Z(L)
Z(Ft)

ϕσD[C≤t ←→ H≥t+1/4] ≍ 1,

which, when combined with (5.3.3) yields (5.13).

The second property (5.3.11) is a direct consequence of Lemma 5.3.5 and the fact that under
Ln−s[·|C≤t−s = ζ], the event C≥t−s = χ is entirely determined by the state of the edges in
Y − ( t−s2 L, 0).
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5.3.4 Proof of Theorem 5.3.2

Proof of Theorem 5.3.2. Fix a direction w⃗. For C, write S0 = 0 and for k ≥ 0 set

Sk+1 = inf{t ≥ Sk + 2 : Nt = 1}

Note that we impose that Sk+1 − Sk ≥ 2; this is purely for technical reasons. Let K be the
first index for which SK =∞.

Let Dk = C≤Sk
\ C≤Sk−1

for k = 1, . . . ,K − 1. We also set DK = C \ C≤SK−1
; this is the

only piece Dk which does not end with a time for which Nt = 1.

First we will describe how to sample the pieces Dk sequentially, which in turn also constructs
the sequence Sk. For this proof, write P for the probability measure used to sample C
according to the procedure described below. We will then argue that the sequence Dk has the
properties necessary for Theorem 5.3.2.

Sequential sampling of C. Fix ζ a possible realisation of C≤Sk
. We will describe how to

sample Dk+1 conditionally on the event that C≤Sk
= ζ. For simplicity write s = Sk – the

value of Sk is determined by the conditioning, so may be treated as a constant.

For 1 ≤ j < s and χ a potential realisation of C≥Sk
−Xk contained in Y + j/2 set

qj(ζ, χ) = min
ξ
ϕξH≥0

[
C≥j = χ+Xj

∣∣C≤j = ζs−j≤.≤s
]
,

For j ≥ s, simply set qj(ζ, χ) = ϕp[C≥j = χ +Xs

∣∣C≤s = ζ]. Finally, for χ a potential
realisation of C≥Sk+1/2 −Xk contained in Y − (L, 0), set

q0(ζ, χ) = min
ξ
ϕξH≥0

[
C≥j+1/2 = χ+Xj

∣∣C≤j = ζs−j≤.≤s
]
,

q0(ζ, χ) = min
ξ
ϕξH≥0

[
C≥1/2 = χ+Xs

]
.

Then define

Zj(ζ) :=
∑
χ

qj(ζ, χ).

By definition, the quantities qj(ζ, χ) and Zj(ζ) are increasing in j. Define a random variable
M̃ taking values in N with

P[M̃k ≤ j |C≤s = ζ] = Zj(ζ).

Sample M̃ , then, conditionally on M̃ , set C̃≥t = χ with probability

P[C̃≥t = χ | Ft, M̃k = j] = 1
Zj(ζ)

(
qj(ζ, χ)− qj−1(ζ, χ)

)
.
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where we ignore the last term when j = 0. With this definition, we find

P[{C̃≥t = χ} ∩ {M̃k ≤ j} |C≤s = ζ] = qj(ζ, χ),

and therefore

P[C̃≥t = χ |C≤s = ζ] = ϕp[C≥j = χ+Xs

∣∣C≤s = ζ] (5.29)

Finally, set Dk+1 = D1(C̃≥t), which is to say the piece of C̃≥t up to its first pre-renewal.

Due to (5.3.4), we have

P[Dk+1 = D |C≤s = ζ] = ϕp[Dk+1 = D |C≤s = ζ],

for any realisationD of Dk+1. This implies that when sampling C according to this procedure,
we indeed obtain the law of the cluster of 0 under the measure ϕp.

Memory variables and renewal structure. Observe that, due to Proposition 5.3.11,

P[M̃k > j|Ft] ≤ η exp(−ηj),

for all j ≥ 0. As such, we may bound M̃k from above by a geometric variable Mk starting
from 0, with some parameter η′ > 0 depending only on η, which is independent of Ft. It
follows that the variables Mk are i.i.d geometric variables with a uniform parameter.

Observe now that, for j ≥ 1, if Mk ≤ j, then the choice of Dk+1 is independent of FSk−j ,
and in particular of FSk−j+1. Moreover, when Mk = 0, it is only the link between Dk+1 that
depends on FSk

, the rest of Dk+1 is independent of FSk
– see also Remark 5.3.12.

If follows that if k is such that Mk+j ≤ j for all j ≥ 0, then C≥Sk
is independent of FSk

,
except for the link. In particular, this implies that Sk is a renewal time for the process (Xt).
Fix therefore the consecutive times (Tℓ)ℓ≥1 which correspond to such renewal times Sk.

Exponential tails. For k ≥ 1, set

Ik = inf{ℓ ≥ k :Mℓ ≥ ℓ− k}.

Note that Ik =∞ implies that Sk is a renewal time.

Define Yt = 1 if t = Sk and Ik =∞. Let us now prove that the inter-renewal times Tk of
Definition 5.3.1 have exponential tails. It is clear that

P[n < Tk+1 − Tk < +∞|FTk , Tk <∞] = P[∃ℓ > n,Mk+ℓ ≥ ℓ]
<⌢
∑
ℓ>n

(1− η)ℓ <⌢ (1− η)n.
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Thus the inter-renewal times have exponential tiails.

Finally, observe that, by construction, each piece CTk≤.≤Tk+1
is contained in the cone

Y+(Tk, XTk), which, together with the exponential decay of the inter-renewal times, implies
the exponential decay of the steps of (Xt).

Mass gap. To prove the mass gap, we will first argue that the inter-renewal times also have
exponential decay when conditioned on a survival event. Indeed, if we apply the above
procedure conditionally on C hitting H≥n, then at every time Sk, C̃≥Sk

will be sampled
according to ϕp[.|FSk

, Xn ̸= †]. Due to (5.13) and (5.3.11), the variables M̃k may still be
bounded from above by i.i.d. modified geometric variables with uniform parameter, even
under this conditioning. We conclude in the same way as above that

P[ℓ < Tk+1 − Tk <∞|FTk , Xn ̸= †] ≤ exp(−cT ℓ), (5.30)

for some constant cT > 0 independent of p, w⃗, k and n.

This implies that

E
[
1{}{ℓ < Tk+1 − Tk <∞}P[Xn ̸= † | FTk+1

] | FTk ]

= P[ℓ < Tk+1 − Tk <∞ and Xn ̸= † | FTk ] ≤ exp(−cT ℓ)P[Xn ̸= † | FTk ].

Writing t = Tk+1 − Tk, we have that

P[Xn ̸= † | Ft]/P[Xn ̸= † | FTk+1
] ≤ P[Xt†],

for any realisations of FTk and FTk+1
as above. Im Check whether this is true

It follows that our process (Xt, Yt) defined as above does indeed have a mass gap of cT > 0,
uniform in p and w⃗.

Initial step survival rate

It remains to prove (5.3.2). Observe that P[T1 < ∞] ≤ ϕ[0 ←→ ΛL] ≍ π1(L(p)), where
the last asymptotic equivalence is due to Theorem 5.2.2. For the lower bound, observe that
standard RSW considerations imply that

P[T1 <∞|0←→ ΛL] ≍ P[T1 <∞|L0,0 ←→ H≥n] ≥ c > 0,

due to the above analysis.

Im edit this remark

Remark 5.3.13. Observe that this construction provides a rigorous construction of “the
infinite cluster conditioned to survive in the direction e⃗1”. Indeed, call L the limit of the joint
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distribution of T1 and ExplT1 under Ln 3, and call L∞ the concatenation of independent
samples of L . L∞ satisfies the equation L ◦L∞, and is natural law for the infinite cluster
of 0 conditioned to survive in the direction e⃗1.

5.4 Local limit theorem for the Markov renewal pro-
cess

5.4.1 Probability of hitting a half-space

Equipped with the renewal structure of the process (Xk), we start by proving the follow-
ing.

Theorem 5.4.1. For any p < pc and w⃗ ∈ S1, there exists ζ(p, w⃗) such that, for the chain
(Xn) constructed with these parameters

ϕp[Xn ̸= †] ≍ π1(L(p)) e−
n

ζ(p,w⃗) . (5.31)

uniformly in p, w⃗ and n ≥ 1. Moreover, ζ is uniformly bounded away from 0 and∞.

Corollary 5.4.2. For any w⃗ ∈ S1 and p < pc,

ϕp[0←→ Hw⃗≥N ] ≍ π1(L(p)) e
−c N

ζ(p,w⃗)L(p) .

uniformly in N ≥ L(p), p and w⃗.

The corollary states that the probability to hit a far-away half-space in the direction w⃗ decreases
exponentially in the distance to the line with a parameter ζ(p, w⃗)L(p). This does not imply
that ξp(w⃗) = ζ(p, w⃗)L(p), since ξp(w⃗) is not defined in terms of hitting a half-space, but
rather a specific point. We will see how to deduce ξp(v⃗) in the next section.

Proof of Theorem 5.4.1. The proof consists in two distinct parts. The first one consists in
establishing the pure exponential decay of ϕp[Xn+T1 ̸= †|FT1 , T1 <∞]. The second one
consists in a classical gluing construction to obtain the factor π1(L(p)) corresponding to the
probability of survival until the first renewal time T1. We start with the first part. For sake of
simplicity, we consider in the first part of the proof that T1 = 0. We also use the notation
P corresponding to the probability measure introduced in the last section. Let also τ be a
random variable having the law of the inter-renewal time, i.e. τ

(d)
= T2 − T1.

Let us introduce pn := P[∃k ≥ 0, Tk = n and Tk+1 = †]. We also set an := P[τ = n].
Remember that we note κ := P[τ = †]. Finally we denote by P (resp. A) the generating
series of the sequence (pn) (resp. (an)). By conditioning on the value of the first step of the

3The uniform exponential decay of the tails of T1 under Ln ensures that this limit is well-defined and is a
probability measure when n→∞.
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walk, observe that for any n ≥ 0, we have pn =
∑n

k=1 akpn−k + κ1n=0, which yields the
“killed renewal equation”

P (z) =
κ

1−A(z)
. (5.32)

The equality holds in the whole domain of convergence of P , which is a power series with
positive coefficients.

Observe that A is a power series with positive coefficients that satisfies A(1) = 1− κ < 1.
By injectivity of A on the positive half-line, there exists a unique t0 > 1 such that A(t0) = 1.

We now argue that the radius of convergence of A is strictly larger than t0, that is that there
exists ε > 0 such that

tk0P[τ = k] ≤ e−εk.

This is due to the mass gap property. Indeed, observe that by definition of the radius of
convergence, it is the case that pk = t

−k(1+o(1))
0 , which means that P[∃r ≥ 0, Tr ≥ k] =

t
−k(1+o(1))
0 . Now, due to (5.3.4), it is the case that

P[τ = k|∃r ≥ 0, Tr ≥ k] = t
k(1+o(1))
0 P[τ = k] ≤ e−cT k.

This shows that the radius of convergence of A is strictly larger than t0.

For convenience, write P̃ (resp. Ã) for the power series P (t0z) (resp. A(t0z)), and D̄ for the
closed unit disc. We now are going to argue that 1 is the only 0 in D̄ of the series Ã − 1.
Indeed, it easy to see that if |z| < 1, then∣∣∑

n≥1

an(t0z)
n
∣∣ ≤∑

n≥1

an(t0|z|)n < 1.

Now we claim that the aperiodicity of the distribution of τ — which itself follows from (5.12)
— implies that Ã− 1 does not have an additional 0 on ∂D̄ \ {1}. Indeed, if it were the case,
then there would exist some θ ∈ (0, 2π) such that

∑+∞
k=0 akt

k
0e

ikθ = 1. By the equality case
in the triangular inequality, one would then have that for all the k ∈ Supp(τ), the eikθ are
aligned; this contradicts the aperiodicity of τ . Finally, we claim that 1 is a simple zero of
the function Ã − 1. Indeed, due to the fact that the radius of convergence of A is strictly
greater than t0, one has that Ã has a positive derivative at 1. Summarizing the previous
reasoning, we proved that the function g(z) := 1−A(z)

1−z does not vanish on D̄. We wish to
apply Wiener’s 1/f theorem (see [115, Theorem 5.2]) to the function g. To that end, we need
to check if this series is summable at 1. It is a simple observation that

g(z) =

+∞∑
n=0

zn

(
+∞∑

k=n+1

tk0ak

)
.
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But
+∞∑
n=0

+∞∑
k=n+1

tk0ak =
+∞∑
k=1

tk0kak = t0Ã
′(1),

which is finite. By Wiener’s 1/f theorem [115, Theorem 5.2], it is the case that 1/g can be
expanded as a power series

∑
n bnz

n in D̄ and that
∑

n |bn| <∞.

Now observe that by (5.15), for any z ∈ D̄,

1

g(z)
=

1

κ
(1− z)P̃ (z) = 1

κ

∑
n≥0

zn[tn0pn − tn−1
0 pn−1].

As Wiener’s Theorem asserts that the sequence (tn0pn − t
n−1
0 pn−1)n is summable, this

demonstrates thanks to Abel’s Theorem that

lim
n
tn0pn = p lim

z→1−

1− z
1− Ã(z)

=
κ

t0Ã′(t0)
> 0. (5.33)

Now observe that by definition of pn, it is the case that

P[∃k ≥ 0, Tk ≥ n] =
∑
k≥n

pk.

By summing the asymptotic expansion given by (5.16) (this is licit as we compare the
remainders of convergent series with positive terms), we obtain that – as n tends to infinity,

P[∃k ≥ 0, Tk ≥ n] = (1 + o(1))
κ

t0Ã′(t0)(t0 − 1)
t−n0 .

This concludes the first part of the proof. Indeed, setting ζ(p, w⃗) := (log t0)
−1, we proved

that
P[∃k ≥ 0, Tk ≥ n] ≍ e

− n
ζ(p,w⃗) .

From this it is easy to conclude that

ϕp[Xn+T1 ̸= †|FT1 , T1 <∞] ≍ e
− n

ζ(p,w⃗) . (5.34)

Let us now turn to the second part of the proof and analyze the behaviour of the term
ϕp[T1 <∞]. All constants below will be uniform in w⃗, p and n ≥ 1. We have

ϕp[Xn ̸= †] = ϕp[Xn ̸= † and T1 ≥ n] +
n∑
k=1

ϕp[T1 = k]P[Xn ̸= †|T1 = k] (5.35)

≍ ϕp[Xn ̸= † and T1 ≥ n] +
n∑
k=1

ϕp[T1 = k]e−(n−k)/ζ(p,w⃗)
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where the second relation is ensured by (5.17). Finally, recall from Theorem 5.3.2 that

P[T1 ≥ k and Xn ̸= †] ≤ e−εk ϕp[Xn ̸= †] and

P[k ≤ T1 <∞] ≤ π1(L(p))e−k(ζ(p,w⃗)
−1+ε),

for some ε > 0. Inserting this into (5.4.1) we find (5.14).

Proof of Corollary 5.4.2. Fix w⃗ and p < pc. All constants below will be uniform in w⃗, p
and n ≥ 1. We have

ϕp
[
X⌊N/L(p)+1⌋ ̸= †

]
≤ ϕp

[
0←→ Hw⃗≥N

]
≤ ϕp

[
X⌊N/L(p)⌋ ̸= †

]
Apply Theorem 5.4.1 to conclude.

5.4.2 Endpoint concentration when conditioned on survival

It remains to study the behaviour of the process (Xk) when conditioned on the event
{Xn ̸= †}. We prove that it satisfies a local limit theorem. Let gσ(x) = 1√

2πσ
e−x

2/2σ2 be
the Gaussian density with variance σ2.

Proposition 5.4.3. Fix w⃗ ∈ S1 and p < pc. There exists µ = µ(p, w⃗) and σ = σ(p, w⃗) such
that, for any k ∈ Z∣∣∣√nϕp[⌊Xn/L(p)⌋ = ⌊n · µ⌋+ k

∣∣∣Xn ̸= †
]
− gσ

(
k√
n

)∣∣∣→ 0. (5.36)

with the asymptotics being uniform in p and w⃗. Furthermore |µ(p, w⃗)| is uniformly bounded
away from∞, σ(p, w⃗) uniformly bounded away from 0 and∞.

Remark 5.4.4. Other properties typical of random walks may be extended to the process
(Xn)n such as the existence of a uniform constant C > 0 such that

ϕp

[
⌊Xn/L(p)⌋ = ⌊n · µ⌋+ k

∣∣∣Xn ̸= †
]
≤ Cϕp

[
⌊Xn/L(p)⌋ = ⌊n · µ⌋

∣∣∣Xn ̸= †
]

(5.37)

and a large deviation estimate

ϕp

[
|Xn/L(p)− ⌊n · µ| ≥ αn

∣∣∣Xn ̸= †
]
= e−I(α)n+o(n) (5.38)

where I is a continuous function on an interval (−ε, ε) for some ε > 0 with I(0) = 0 and
I(α) > 0 for α ̸= 0. All constants appearing in the above are uniform in n, w⃗ and p < pc.
The rate function I does depend on the direction w⃗. For proofs of such statements, see [16].

Proof. Local limit-type theorems for compound Markov processes are classical, and can be
found in a number of references. For instance, this result directly follows from [16, Theorem
2.1.2]
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We are finally ready to deduce some form of the OZ-formula. Recall the quantity ζ(p, w⃗)
defined in Theorem 5.4.1.

Corollary 5.4.5. Fix w⃗ ∈ S1 and p < pc. There exists µ = µ(p, w⃗) and σ = σ(p, w⃗) such
that

ϕp
[
0←→ x

]
≍ π1(L(p))

2

√
n

e
− n

ζ(p,w⃗) , (5.39)

uniformly in p, w⃗, n ≥ 1 and any x ∈ Z2 with ∥x− nL(p)(w⃗ + µ · w⃗⊥)∥ ≤ L(p)/2.

Remark 5.4.6. The same proof as below allow one to deduce from (5.4.4) a large deviation
estimate for the hitting position

ϕp

[
0←→ ⌊nL(p)(w⃗ + (µ(p, w⃗) + α) · w⃗⊥)⌋

∣∣∣ 0←→ Hw⃗≥n] = π1(L(p)) · e−I(α)n+o(n)(5.40)

for any α close enough to 0 and some continuous rate function I with I(0) = 0 and I(α) > 0
for α ̸= 0.

Proof of Corollary 5.4.5. Fix p, w⃗ ∈ S1 and x ∈ ΛL(p)/2(nL(p)(w⃗ + µ(p, w⃗) · w⃗⊥)) for
some n ≥ 1. For n < 3 it was proved in [51] that ϕp[0 ←→ x] ≍ π1(L(p))

2. We will
henceforth assume that n ≥ 3. The upper and lower bound on ϕp[0←→ x] will be treated
differently.

Write Γ for the exploration top-most open path of C between H≤0 and H≥n−1. On the
event that there exists a unique cluster of C crossing between these to half-spaces, Xn−1 is
the endpoint of Γ on H≥n−1. Conditioning on a realisation Γ = γ with ⌊Xn−1/L(p)⌋ =
⌊(n− 1) · µ(p, w⃗)⌋, by an applying RSW-type construction in Λ2L(p)(x) (see Figure ?? Im
TO DO) we find that

ϕp[0←→ x |Γ = γ] ≥ c ϕ0ΛL(p),p
[x←→ ∂ΛL(p)/2] ≍ π1(L(p)),

where (5.2) and (5.3) state that all constants may be chosen uniform in w⃗ and p. Summing
over γ as above, and keeping in mind that the probability that Xn−1 is measurable in terms
of Γ is exponentially high under the conditioning Xn−1 ̸= †, we conclude that

ϕp[0←→ x] ≥ cπ1(L(p))ϕp
[
⌊Xn−1/L(p)⌋ = ⌊(n− 1) · µw⃗⌋

]
≍ π1(L(p))

2

√
n

e
− n

ζ(p,w⃗) ,

where we used (5.4.5) and (5.14) in the last equivalence.

We turn to the upper bound, for which we decompose

ϕp[0←→ x] ≤ ϕp[0←→ ΛL(p)(x) and x←→ ∂ΛL(p)(x)]

≤ ϕp[0←→ ΛL(p)(x)]ϕ
1
ΛL(p)p

[0←→ ∂ΛL(p)] (5.41)
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where the second inequality is due to the fact that the two events are measurable in terms of
what happens outside and inside of ΛL(p)(x), respectively. The second term is bounded by a
constant multiple of π1(L(p)) by (5.3). Write T for the last renewal time of before time n.
Then the first term may be bounded by

ϕp[0←→ ΛL(p)(x)] ≤
∑
j≥0

ϕp
[
T = n− j and |XT − nµw⃗| ≤ j

]
≤
∑
j≥0

ϕp
[
|Xn−j − nµw⃗| ≤ j]ϕp[no renewal in [n− j, n] but Xn ̸= †

∣∣n− j is renewal
]
,

where the decomposition in the last inequality is due to the fact that T is a renewal, and
therefore the probability of having no renewal in the next j steps is independent of the position
of the walk at time T . Due to (5.3.1) and (5.4.4)

ϕp
[
0←→ ΛL(p)(x)

]
≤ Cπ1(L(p))

∑
j≥0

j 1√
n−j e

− n−j
ζ(p,w⃗) · e−j(ζ(p,w⃗)−1+ε)

≤ C ′π1(L(p))√
n

e−n/ζ(p,w⃗)

In the last line, we simply used the summability of je−εj . Inserting this together with the
estimate on ϕ1ΛL(p)p

[0←→ ∂ΛL(p)] into (5.4.2), we deduce the matching upper bound.

In light of the above, write

v⃗(w⃗) :=
w⃗ + µ(p, w⃗) · w⃗⊥

∥w⃗ + µ(p, w⃗) · w⃗⊥∥
.

Taking n→∞ in (5.4.5), we conclude that

ξp(v⃗(w⃗)) =
L(p)ζ(p, w⃗)

∥w⃗ + µ(p, w⃗) · w⃗⊥∥

Lemma 5.4.7. For any v⃗ ∈ S1, there exists at least one w⃗ ∈ S1 so that

v⃗(w⃗) = v⃗.

Proof. We will prove that the function w⃗ 7→ v⃗(w⃗) is continuous. This is a simple geometric
construction; see Figure ?? for an illustration.

Fix some w⃗ ∈ S1 and assume for simplicity that µ(p, w⃗) ≥ 0. Write ρδ(.) be the rotation by
an angle δ.

For δ > 0, a connection between 0 and x = nL(p)(w⃗+µ · w⃗⊥) intersectsHρδ(w⃗)≥n·cos δ Together
with (5.18) and (5.14) this implies that

ζ(p, ρδ(w⃗)) ≥ cos δ · ζ(p, w⃗)
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For δ < 0, write θ = arctan(µ(p, w⃗)) – note that θ is uniformly bounded away from∞ by
Proposition 5.4.3 Then, a connection between 0 and x = nL(p)(w⃗ + µ · w⃗⊥) ensures that
the cluster of 0 intersectsHρδ(w⃗)≥n cos(θ+δ)/ cos(θ).

ζ(p, ρδ(w⃗)) ≥ cos(θ+δ)
cos(θ) · ζ(p, w⃗).

Using the two displays above, and their versions with the roles of w⃗ and ρδ(w⃗) inverted, we
conclude that w⃗ 7→ ζ(p, w⃗) is continuous.

The same reasoning as above proves that, for any ε > 0 and δ small enough

ϕp

[
0←→ n

⟨v⃗(w⃗),ρδ(w⃗)⟩ v⃗(w⃗)
∣∣∣ 0←→ Hρ(δw⃗)≥n

]
≥ exp(−ε n).

Together with the large deviation estimate (5.4.6) and the continuity of the rate function, this
implies that v⃗(w⃗) is close to v⃗(ρδ(w⃗)). Thus we conclude the proof of the continuity of
w⃗ 7→ v⃗(w⃗).

To finish the proof of the Lemma, observe that for w⃗ a coordinate vector µ(p, w⃗) = 0 due to
the symmetry of the lattice. It follows that v⃗(w⃗) = w⃗ in this case. By the intermediate value
theorem, we conclude that the image of the function w⃗ 7→ v⃗(w⃗) covers the whole unit circle,
as claimed.

We can finally prove Theorem 5.1.1.

Proof of Theorem 5.1.1. Fix q ≥ 1, v⃗ ∈ S1 p < pc and n ≥ ξp(v⃗). Define w⃗ as a vector
such that v⃗(w⃗) = v⃗. Then (5.4.5) implies that

ϕp
[
0←→ ⌊nv⃗⌋

]
≍ π1(L(p))

2

√
m

e
− m

ζ(p,w⃗) , (5.42)

where m = n
⟨v⃗,w⃗⟩L(p) . Recall that the drift µ(p, w⃗) is bounded uniformly, and therefore

⟨v⃗, w⃗⟩ is uniformly positive. Thus m ≍ n/L(p). Moreover, the above implies that
ξp(v⃗) = ⟨v⃗, w⃗⟩L(p)ζ(p, w⃗) ≍ L(p).

Inserting the above in (5.4.2) we conclude that

ϕp
[
0←→ ⌊nv⃗⌋

]
≍ π1(⌊ξp(v⃗)⌋)2

√
ξp(v⃗)
n e

− n
ξp(v⃗) ,

as claimed.
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5.4.3 Strict convexity of Wulff shape

Fix p < pc. Define ξ∗p(w⃗) by

(ξ∗p(w⃗))
−1 = − lim

n→∞

1

n
log ϕp[0←→ Hw⃗≥n].

Notice that this definition, as well as the one for ξp are valid for any vector in R2 \ {0}. For
coherence, we set ξp(0) = ξ∗p(0) =∞.

It is classical [25] that both (ξp(.))
−1 and (ξ∗p(.))

−1 define norms on R2. Indeed they are
both positive homogeneous, and FKG inequalities imply that they are convex. Define their
unit balls

Up = {v⃗ ∈ R2 : ξp(v⃗) ≥ 1} and Wp = {w⃗ ∈ R2 : ξ∗p(w⃗) ≥ 1}.

The latter is called the Wulff shape (see [15] for an extensive review on the subject).

The goal of this section is to explain how our approach allows to re-prove some known results
about Up andWp. The method is different of [25], as it does not rely on the analysis of the
regularity properties of the associated Ruelle–Perron–Frobenius operator.

Theorem 5.4.8. For any p < pc, Up andWp are strictly convex bounded sets ofR2, symmetric
with respect to the coordinate axis with differentiable boundaries. Moreover, they are convex
dual to each other, i.e. they are linked by the following relation:

Up = {v⃗ ∈ R2, ⟨v⃗, n⃗⟩ ≤ ξ∗p(n⃗), ∀n⃗ ∈ R2} and Wp = {w⃗ ∈ R2, ⟨w⃗, n⃗⟩ ≤ ξp(n⃗),∀n⃗ ∈ R2}.

Proof. We start by proving the relation between Up andWp, and start with the expression for
Up. Let v⃗ be a direction. Let w⃗ be a unit vector. Observe that the hyperplane with normal
vector w⃗ containing the vertex nv⃗ is given by ∂H⊥w⃗

≥n⟨v⃗,w⃗⟩. Thus, it is clear that

ϕp[0←→ nv⃗] ≤ ϕp[0←→ H⊥w⃗
≥n⟨v⃗,w⃗⟩].

Identifying the constants leading the exponential decay of these two quantities, we obtain the
following equation

ξp(v⃗)⟨v⃗, w⃗⟩ ≤ ξ∗p(w⃗). (5.43)

This inequality being valid for any choice of directions w⃗, v⃗, we observe that if v⃗ satisfies
ξp(v⃗) ≥ 1, then for any w⃗ ∈ S1, ξ∗p(w⃗) ≤ ⟨v⃗, w⃗⟩. This gives

Up ⊂ {v⃗ ∈ R2, ⟨v⃗, n⃗⟩ ≤ ξ∗p(n⃗), ∀n⃗ ∈ R2}.

For the converse inclusion, let v⃗ be a unit vector such that for any n⃗, ⟨v⃗, n⃗⟩ ≤ ξ∗p(n⃗). Observe
that Lemma 5.4.7 yields the existence of w⃗ ∈ S1 such that v(w⃗) = v⃗. Observe that the proof
of the OZ formula and in particular (5.4.2) implies that

ξp(v⃗) = ζ(p, w⃗)L(p)⟨v⃗, w⃗⟩.
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By definition, it is the case that ζ(p, w⃗)L(p) = ξ∗p(w⃗). Thus, v⃗ = v(w⃗) achieves the equality
case in (5.19). Thus we conclude by writing that

ξp(v⃗) =
ξ∗p(w⃗)

⟨v⃗, w⃗⟩
≥ 1,

where the last inequality is a consequence of our assumption on v⃗. Thus,

Up = {v⃗ ∈ R2, ⟨v⃗, n⃗⟩ ≤ ξ∗p(n⃗), ∀n⃗ ∈ R2}. (5.44)

In the language of convex bodies, Up is the convex body with gauge function given by ξp.
Now, (5.20) gives that its support function is ξ∗p . Classical results on convex duality [112,
polar duality theorem, p. 238] then imply that the support function of U∗

p is ξp, and that its
gauge function is ξ∗p , which immediately proves thatWp = U∗

p and

Wp = {w⃗ ∈ R2, ⟨w⃗, n⃗⟩ ≤ ξp(n⃗), ∀n⃗ ∈ R2}.

We notice en passant that as respective gauge and support functions of two dual convex
bodies, ξ and ξ∗ are the generalized Legendre transforms one of each other.

We now turn to strict convexity properties. Assume that Up possesses a flat facet. This means
that there exists v1 ̸= v2 ∈ ∂Up such that the line segment [v1, v2] is contained in ∂Up. We
are going to see that it contradicts the large deviation principle stated in (5.4.6). Indeed,
call w⃗ the unit vector normal to the hyperplane containing v1 and v2. Call v⃗1 = v1

∥v1∥ and
v⃗2 =

v2
∥v2∥ . Also call v⃗ = v⃗(w⃗), and v the point in the direction v⃗ lying on ∂Up. Due to the

convexity of Up, it is the case that v, v2 and v1 must lie on the same line, and we assume
that v ∈ [v1, v2]. Also, let α > 0 be such that v1 = v + αw⊥. Then on the one hand, due
to (5.4.6),

ϕp[0←→ nv1|0←→ Hw
⊥

≥n ] = π1(L(p))e
−I(α)n+o(n)

with I(α) > 0. On the other hand however, by definition of v and the fact that v ∈ [v1, v2],

lim
n
− 1
n log ϕp[0←→ H

w⊥
≥n ] = lim

n
− 1
n log ϕp[0←→ nv] = lim

n
− 1
n log ϕp[0←→ nv1].

This is the required contradiction.

We proved that Up is strictly convex. This implies that ξp is strictly convex. Further
classical considerations on Legendre transforms imply that the boundary ofWp is everywhere
differentiable, and so is ξ∗p .

A similar reasoning establishes the strict convexity ofWp, and the differentiability of the
boundary of Up and of ξp.
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5.4.4 Invariance principle

Fix p < pc and w⃗ ∈ S1. Define the linear interpolation X(t)t≥0 of the discrete process
(Xn)n≥0. The representation of the cluster in terms of a random-walk like object allows to
prove several invariance principles, similar to Donsker’s Theorem for random walks. For
instance, non-uniform invariance principles similar to Theorem 5.4.9 were derived in [25]
and [38]. Our representation allows to prove the two following invariance principles.

Theorem 5.4.9. Under the family of measures ϕp[ · | 0←→ Hw⃗≥n], uniformly in p and w⃗,
when n→∞, ( 1√

n
X(nt)

)
t∈(0,1) ⇒

(
B
µ(p,w⃗),σ(p,w⃗)
t

)
t∈(0,1),

whereBµ(p),σ(p)
t denotes the one-dimensional Brownian motion started at 0 with drift µ(p, w⃗)

and variance σ(p, w⃗).

Moreover, under the family of measures ϕp[ · | 0 ←→ nv⃗], uniformly in p and v⃗, when
n→∞, ( 1√

n
X(nt)

)
t∈(0,1) ⇒

(
BB

σ(p,w⃗)
t

)
t∈(0,1),

where w⃗ is the unique unit vector such that v⃗(w⃗) = v⃗ and BB
σ(p,w⃗)
t is the one-dimensional

Brownian bridge started at 0 and ending at v⃗ with variance σ(p, w⃗).

In both statements, the convergence occurs in the space of continuous functions from [0, 1] to
R, endowed with the topology of uniform convergence.

Proof. As previously, this follows directly from Theorem 5.3.2 together with classical
considerations on Markov renewal processes. The first invariance principle directly follows
from [16, Theorem 1.5.3]. The second invariance principle is a classical consequence of
the first one together with the local limit estimate given by Proposition 5.4.3. As this is
classical, we do not give further details, and refer to [38] for the formal reasoning leading to
the invariance principle.
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[47] Roland Dobrushin, Roman Kotecký, and Senya Shlosman. Wulff Construction: a
global shape from local interactions, volume 104 of Translations of mathematical
monographs. American Mathematical Society, Providence, R. I, 1992.

[48] H. Duminil-Copin. Graphical Representations of Lattice Spin Models: Cours Peccot,
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