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The quantification of human perception through the study of psychome-
tric functions � is one of the pillars of experimental psychophysics. In
particular, the evaluation of the threshold is at the heart of many neu-
roscience and cognitive psychology studies, and a wide range of adap-
tive procedures has been developed to improve its estimation. However,
these procedures are often implicitly based on different mathematical
assumptions on the psychometric function, and unfortunately, these as-
sumptions cannot always be validated prior to data collection. This raises
questions about the accuracy of the estimator produced using the differ-
ent procedures. In the study we examine in this letter, we compare five
adaptive procedures commonly used in psychophysics to estimate the
threshold: Dichotomous Optimistic Search (DOS), Staircase, PsiMethod,
Gaussian Processes, and QuestPlus. These procedures range from model-
based methods, such as the PsiMethod, which relies on strong assump-
tions regarding the shape of �, to model-free methods, such as DOS, for
which assumptions are minimal. The comparisons are performed using
simulations of multiple experiments, with psychometric functions of var-
ious complexity. The results show that while model-based methods per-
form well when � is an ideal psychometric function, model-free methods
rapidly outshine them when � deviates from this model, as, for instance,
when � is a beta cumulative distribution function. Our results highlight
the importance of carefully choosing the most appropriate method de-
pending on the context.

1 Introduction

Psychophysics methods are used to investigate the relationship between
physical stimuli and the subjective percepts or responses they elicit. Aside
from underlying basic research in neuroscience and human perception,
psychophysics methods have widespread applications, spanning from the
study of attention (Scheuerman et al., 2017), to the conception of allow-
ing systems to compress audio signals without altering perceived signal
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quality (see Dreschler & Verschuure, 1996; Zwicker, 2000), or to the eval-
uation of treatments for pain relief (Nir et al., 2011). Psychophysics experi-
ments to study human perception usually consist of presenting the observer
with a sequence of stimuli of varying intensity (e.g., loudness, frequency,
brightness, contrast) and measuring the response associated with each stim-
ulus. The overall performance of the observer is then summarized using a
psychometric function �, which encodes the proportion of stimuli detected
by the observer as a function of the intensity.

Frequently, the psychometric function is derived from the experimental
results using a Bayesian approach. In this case, � is assumed to be a two-
parameter function of a given family, such as the Weibull cumulative dis-
tribution function (c.d.f.), and its parameters are fitted to the collected data,
using, for instance, the maximum likelihood principle (Kontsevich & Tyler,
1999). In some situations, however, the experimenters are interested in de-
termining a specific landmark of � rather than in estimating the entire func-
tion. Aparticularly important landmark is the threshold, noted s∗, where the
stimulus is just noticeable (Benson, Hutt, & Brown, 1989). Estimating this
threshold is arguably one of the most common targets of psychophysics
experiments, notably because this value can be informative about the un-
derlying sensory and perceptual processes. While it is possible to obtain
this threshold by first estimating the entire psychometric function and then
computing the inverse of that function for the desired performance level,
this approach is demanding and tends to require a considerable amount of
experimental data (Song, Garnett, & Barbour, 2017). Consequently, multi-
ple procedures have been proposed to estimate directly the threshold with-
out estimating �. Among these procedures, the most commonly used is
arguably the Staircase method (Levitt, 1971).

Another key aspect of psychophysics experiments lies in the choice of
a sequence of stimuli to present to the observer. Note that ideally, this se-
quence should be as short as possible in order to limit fatigue-evoked bias
(Wichmann & Hill, 2001a). One commonly used technique is the method
of constant stimuli (Wichmann & Hill, 2001a), which consists of presenting
the observer with a sequence of stimuli, spanning from imperceptible to
consistently perceptible. However, this approach suffers from many limita-
tions, particularly when the objective is to estimate the threshold, notably
due to the fact that the sequence of stimuli is independent of the observer’s
responses. First, the sequence may include points that might be irrelevant
to the estimation of the threshold. Second, the fixed sequence does not ac-
count for the differences of individual observers. This is a key problem, as
the threshold can vary by a factor of ten between individuals (Benson et al.,
1989). Consequently, there has been an increased interest in using adap-
tive algorithms consisting of dynamically adapting stimulus intensity to
the observer’s responses (Leek, 2001). In particular, multiple adaptive psy-
chophysics procedures have been proposed, such as the Staircase (Levitt,
1971) and the PsiMethod (Kontsevich & Tyler, 1999). These procedures

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/34/2/338/1982827/neco_a_01461.pdf by R
am

ona M
archand on 15 February 2022



340 J. Audiffren and J.-P. Bresciani

include an adaptive algorithm that determines the sequence of stimuli to
be presented to the observer. This algorithm takes into account both the pa-
rameters of the experiments and the past responses of the observer. Adap-
tive procedures also include a method to compute an estimator of s∗ at the
end of the experiment.

While adaptive procedures share the same objectives, the scope of their
assumptions regarding � varies broadly. Importantly, the general setting of
the psychophysics experiment yields almost no assumption regarding �.
Specifically, the only commonly accepted hypotheses are that � is always
nondecreasing (the stronger the stimulus is, the easier it is to perceive) and
continuous (Leek, 2001). But these hypotheses are insufficient to develop a
principled algorithm to estimate the threshold.1 Thus, each adaptive pro-
cedure yields its own set of additional hypotheses on �, which unfortu-
nately are not always clearly stated and cannot be verified. In particular,
the shape and properties of � associated with a particular task are never
directly accessible to the experimenter and can therefore only be estimated
(Zchaluk & Foster, 2009). Moreover, even after the experiment has been per-
formed and data have been collected, identifying the best parametric model
for � or evaluating the relevance of a given choice is deeply challenging
(Strasburger, 2001). This hinders the reliability of Bayesian methods because
adaptive methods that require prior knowledge on the shape of the psycho-
metric function tend to produce significantly worse estimations when the
assumptions they rely on are false (García-Pérez & Alcalá-Quintana, 2007;
Hatzfeld, Hoang, & Kupnik, 2016). Therefore, the choice of the adaptive
procedure is of paramount importance to accurately evaluate a behavioral
or perceptive task. However, to the best of our knowledge, there is no clear
consensus on which method to use for any given experiment, in particular
when little is known about the psychometric function.

While it would be impossible to pinpoint the best procedure for each pos-
sible behavioral or perceptive task, in this work, we aimed at studying mul-
tiple settings to develop general guidelines. We focused on the threshold
estimation problem for one-dimensional psychometric functions, and we
paid particular attention to the link between the strength of the hypotheses
underpinning adaptive procedures and their performance, both when their
assumptions are met and when they are not. We looked at five adaptive pro-
cedures that we regrouped in two general classes: two model-based meth-
ods (i.e., methods that yield strong assumptions on the global shape of �),
namely, the PsiMethod (Kontsevich & Tyler, 1999) and the QuestPlus (Wat-
son, 2017), and three model-free methods (where assumptions are made on
local properties of �), namely, the Staircase (Levitt, 1971), the Gaussian Pro-
cesses (GP; Song et al., 2017), and the Dichotomous Optimistic Search (DOS;

1
For a more in-depth discussion of the minimal set of mathematical assumptions nec-

essary to solve this problem, we refer readers to the global black box optimization litera-
ture, and in particular to Grill, Valko, and Munos (2015).
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Audiffren, 2021a, 2021b). These procedures were compared using multiple
simulations and a wide range of psychometric functions, ranging from com-
monly studied �, such as Weibull c.d.f. (García-Pérez & Alcalá-Quintana,
2007), to unusual � functions, such as beta c.d.f. For every psychometric
function, multiple different hyperparameters were tested, reflecting both
steep and flat slopes, in two different settings: the yes/no and the 2-AFC
(alternative forced choice) framework (see Wichmann & Hill, 2001b). Based
on the results of these experiments, we discuss possible guidelines regard-
ing the choice of the most appropriate adaptive procedure depending on
the setting of the task at hand.

It should be noted that previous work has provided valuable reviews
on the estimation of psychometric functions, such as Wichmann and Hill
(2001a), which discusses the estimation of the entire psychometric function,
or Klein (2001), which proposes a global approach to the problem. However,
compared to existing studies, our work follows a different objective: to de-
termine how well one can estimate the threshold given the data of an adap-
tive procedure (i.e., a generally significantly lower number of data points
that are dependent on the observer’s answer). This is different from their
objective, which was to estimate the threshold, slope, and goodness of fit
of different nonadaptive procedures, with significantly larger stimuli bud-
gets. Moreover, this work provides a thorough comparison of new, highly
efficient adaptive procedures that have been introduced in the past few
years, including, notably, QuestPlus (a powerful generalization of Quest
and GP and DOS, two robust nonparametric methods) (Watson, 2017; Song
et al., 2017; Audiffren, 2021a). The methods are compared in multiple set-
tings, using a significantly wider range of possible psychometric functions,
in particular unusual psychometric functions that differ significantly from
logistic/gaussian c.d.f. Furthermore, our experiments analyze the degra-
dation of performance of the adaptive procedures when their assumptions
regarding � are no longer correct (i.e., the model of �), which allows us
to pinpoint the respective benefits and drawbacks of both model-free and
model-based procedures. Finally, we report an additional metrics in our ex-
periments, the regret, which provides additional information regarding the
weaknesses of the methods’ results (see previous work on the estimation of
quantiles, such as Chaudhuri & Kalyanakrishnan, 2017).

2 Method

2.1 Problem Setting. We start by introducing a formal setting of the
threshold estimation problem, which was used to compare the different
adaptive procedures. Note that this setting is built on the one introduced
by Audiffren (2021b).

2.1.1 Notation. In the following, we use the notation from Audiffren
(2021a). Let T denote the time horizon (i.e., the maximum number of stimuli
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342 J. Audiffren and J.-P. Bresciani

presented to the observer during one experiment), I ⊂ R the (closed) inter-
val of possible stimuli, � : I �→ [0, 1] the (unknown) psychometric function,
μ∗ ∈ [0, 1] the target probability, and s∗

.= �−1(μ∗) the threshold. Finally, let
γ = infs∈I �(s) denote the guess rate—the chance of the observer to make
a correct guess independent of the stimulus—and λ = 1 − sups∈I �(s) the
lapse rate. Note that these notations are identical to Wichmann and Hill
(2001a), except for s∗ and μ∗, which had no equivalent.

2.1.2 Psychophysics Experiment. In the threshold estimation problem, the
objective of a psychophysics experiment is to find an estimator ŝ of the
threshold s∗ with at most T stimuli. I, T, and μ∗ are known to the experi-
menter, but � and s∗ are not. The process unfolds as follows. For each round
t ∈ [1, . . . , T], the experimenter chooses an intensity s ∈ I, and the observer
detects it with probability �(s)—more precisely, the detection process fol-
lows a Bernoulli law of mean �(s), and all samplings are assumed inde-
pendent. The observer then communicates the result to the experimenter.
At the end of the experiment (t = T), the experimenter computes the best
guess for the target stimulus s∗, noted ŝ. Importantly, this setting can model
most psychometric experiments by choosing the correct values of μ∗, γ , λ,
T, or �. For instance, the Yes/No setting can be obtained by setting μ∗ = 0.5
and γ = 0 (Wichmann & Hill, 2001a), while the N-AFC setting results from
choosing γ = 1/N and μ∗ = 0.707 (Lengyel & Fiser, 2019). In the following,
we assume without any loss of generality that I = [0, 1]. This is because any
stimuli interval can easily be mapped to [0, 1] using either linear or logarith-
mic invertible transformations. We also assume that the target probability is
strictly reachable, that is, γ < μ∗ < 1 − λ, which is always the case in well-
posed psychometric experiments. Finally, and due to the nature of the task
(i.e., detecting stimuli of various intensity), the psychometric function is as-
sumed to be continuous and strictly increasing (see Leek, 2001).

2.1.3 Evaluation. Multiple metrics have been proposed to assess the es-
timator ŝ produced by a psychometric procedure, the most common being
arguably the Accuracy and the Sweat Factor (Hatzfeld et al., 2016). These
two metrics evaluate the distribution of ŝ with respect to s∗ over multiple
simulation runs. Formally, let f denote a psychometric procedure and s∗
be the solution to the threshold estimation problem with � and μ∗. Given
ŝ f

1 , . . . , ŝ f
N N estimations produced by an adaptive method f over N simu-

lations, the Accuracy of an estimator is defined as

Accuracy( f ) = 1
N

N∑
n=1

(ŝ f
n − s∗). (2.1)

Note that equation 2.1 is also called bias and that it measures the difference
between the mean of ŝ f over multiple experiments and the real threshold s∗,
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representing the empirical evaluation of the bias of the estimator ŝ f . Note
that since s∗ is not known during a real experiment, the bias can only be
computed using simulations. The other metric is the Sweat Factor, which
is defined as

Sweat Factor( f ) =

√√√√√ 1
N − 1

⎡
⎣ N∑

n=1

(
ŝ f

n

)2
−

(
N∑

n=1

ŝ f
n

)2⎤⎦. (2.2)

The Sweat Factor is used to evaluate the precision of the estimator, that is,
the dispersion of ŝ f over N runs. This metric can also be seen as the standard
deviation of the distance between ŝ f and s∗. More recently, a new metric
has been introduced to evaluate the distribution of �(ŝ f ) with respect to μ∗
(Audiffren, 2021b):

Regret( f ) = 1
N

N∑
n=1

|μ∗ − �(ŝ f
n )|. (2.3)

Equation 2.3 measures the mean (over multiple experiments) of the dis-
tance between μ∗ and �(ŝ f ). While there is a significant relation between
Regret and Accuracy, it is important to note that Regret encodes the dis-
tance between probabilities rather than the distance between stimuli. In
other words, while Accuracy represents the distance between the predicted
stimulus intensity and the target landmark, Regret quantifies how repre-
sentative this estimator is. It is interesting to note that this metric takes
the shape of � into account and thus automatically adapts to the difficulty
of the threshold estimation problem: a small Regret indicates an estimated
stimulus whose detection probability �(ŝ) is very close to the desired value
μ∗. Similar to Accuracy, Regret can only be computed using simulations, as
it requires knowing �.

2.2 Adaptive Procedures. For our simulations, we studied five adap-
tive procedures that we regrouped in two broad classes: model-based meth-
ods, which are Bayesian methods with strong assumptions on the global
shape of �, and model-free methods, which only rely on assumptions re-
garding the local properties of �.

2.2.1 Model-Based Procedures. We considered two Bayesian procedures,
the PsiMethod and the QuestPlus.

The PsiMethod (Kontsevich & Tyler, 1999) aims at estimating the pa-
rameters of � (i.e., location and slope) by choosing at each step the stim-
ulus that maximizes the expected reduction of uncertainty in the posterior
distribution of the parameters. We used the parameters recommended by

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/34/2/338/1982827/neco_a_01461.pdf by R
am

ona M
archand on 15 February 2022



344 J. Audiffren and J.-P. Bresciani

Kontsevich and Tyler (1999), a modified version of the implementation pro-
vided by Peirce et al. (2019), with gaussian c.d.f. as a prior.

The QuestPlus (Watson, 2017) is a generalization of the Quest method
(Watson & Pelli, 1983), which estimates the location and slope parameters,
as well as the lapse rate λ. Similar to the PsiMethod, the QuestPlus relies on
the minimum entropy principle to choose the adaptive sequence of stim-
uli to present to the observer and on the maximum likelihood principle to
estimate the final values of the parameters. We used the parameters recom-
mended by Watson (2017), and a modified version of the implementation
provided by Peirce et al. (2019), with Weibull c.d.f. as the shape assumption
for �.

Note that both methods use a multidimensional grid of possible val-
ues for their parameters (location, slope, lapse), as well as the stimuli val-
ues. While high-resolution grids might provide better approximations of
the Bayesian method and thus better results, they also lead to a significant
increase in the computational complexity of the method. A careful consid-
eration of the trade-off is generally important for the optimal use of these
methods.

2.2.2 Model-Free Procedures. We also considered three model-free meth-
ods: two non-Bayesian procedures (Staircase and DOS) and Gaussian Pro-
cesses (GP).

The GP method has been proposed by Gardner, Malkomes et al. (2015),
Gardner, Song, Weinberger, Barbour, and Cunningham (2015), and Song
et al. (2017). It is inspired by a classical tool for nonlinear regression
(MacKay, 1998). While intrinsically a Bayesian method, GP’s prior is sig-
nificantly weaker than the previously mentioned Bayesian methods, as �

is only assumed to belong to a collection of reproducing kernel Hilbert
spaces, a very rich functional space (see Kadri et al., 2016). GP methods
have been shown to significantly outperform other methods for some ap-
plications such as audiograms (see Gardner, Malkomes et al., 2015). The use
of GP procedures requires the choice of a kernel family (such as linear ker-
nels; Song et al., 2017), a family of mean functions, a regularization (also
called noise variance), and two grids of possible parameters (one for the
kernel and one for the mean functions). GP methods tend to perform best
when these functions are handcrafted for the problem at hand (Gardner,
Malkomes et al., 2015), and their performance may worsen when the ker-
nel is ill suited (see Schulz, Speekenbrink, & Krause, 2018). It is important
to note that we chose to class GP as a model-free family since the choice of
the kernel function influences the local properties of the � function rather
than its global behavior. We used GP with the parameters used in Song et al.
(2017).

The Staircase (and its iterations) (Cornsweet, 1962; Levitt, 1971; Wich-
mann & Jäkel, 2018) is arguably the most commonly used adaptive method.
This procedure can be seen as performing an asymmetric random walk
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on the space of stimuli. The main parameters of the Staircase are the
UP/DOWN ratio, which conditions the target probability toward which the
Staircase will converge (e.g., μ∗ = 0.5 for UP = DOWN = 1 and μ∗ = 0.707
for UP = 1 and DOWN = 2 (see Brown, 1996), and the step sizes. Levitt
(1971) have shown that if � is the c.d.f. of a gaussian distribution, STAIR
has a guaranteed convergence for the appropriate choice of step sizes. We
used the Staircase with the parameters recommended by Lengyel and Fiser
(2019).

Finally, the DOS (Dichotomous Optimistic Search; Audiffren, 2021a) is
a more recent procedure inspired by hierarchical bandits and black box
optimization. Compared to the other procedures we have noted, the DOS
is model and parameter free. Specifically, the DOS does not require any
knowledge regarding the shape of the psychometric function. It only as-
sumes that � is mildly smooth around s∗ and has no parameter besides
μ∗ and T. Finally, it should be noted that DOS provides strong guarantees
regarding its convergence speed (Audiffren, 2021a).

2.3 Psychometric Functions. Four different shapes of psychomet-
ric functions were studied in our simulations: two commonly used
functions—logistic and Weibull c.d.f.—and two functions seldomly used
in psychophyics—Beta c.d.f. and a Hölder-continuous function (Hölder for
short). While both the logistic and Weibull c.d.f. functions have been specif-
ically studied (see Hatzfeld et al., 2016; García-Pérez & Alcalá-Quintana,
2007), the Beta c.d.f. and Hölder functions were chosen because recent work
(e.g., Zchaluk & Foster, 2009) has suggested that commonly used c.d.f. may
not be able to capture the psychometric functions for all psychophysical
tasks. Therefore, we chose to use Beta c.d.f. and Hölder � to assess the ro-
bustness of the different adaptive procedures when the psychometric func-
tions have an unusual shape. Importantly, each function satisfies a minimal
set of assumptions: � is nondecreasing (the stronger the stimulus is, the
easier it is to perceive) and continuous (Leek, 2001). Every psychometric
function listed below was tested with multiple sets of parameters (slope,
location), reflecting both steep and flat slopes, similar to the experimental
design of Hatzfeld et al. (2016). Moreover, two different settings were used:
the Yes/No (γ = 0, λ = 0.02, μ = 0.5) and the 2-AFC (γ = 0.5, λ = 0.02,
μ = 0.707) framework. Figure 1 shows the behavior of each steep function
in the Yes/No setting.

2.3.1 Logistic Function. See Hatzfeld et al. (2016). We used α = 0.4, β = 10
for the flat setting and α = 0.7, β = 24 for the steep setting:

�(s|α, β ) = γ + (1 − γ − λ)
1

1 + e−β(s−α)
.
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346 J. Audiffren and J.-P. Bresciani

Figure 1: Illustration of the four psychometric functions that we studied, for
the steep set of parameters in the Yes/No setting. The dashed black line repre-
sents the 50% perception level. Top left: Weibull c.d.f. Top right: Logistic c.d.f.
Bottom left: Beta c.d.f. Bottom right: Hölder function. Note that the 0.5 threshold
is associated with different stimuli for each function. In particular the threshold
of the beta function is ≈0.09 and is therefore very close to the lower end of the
stimuli intensity interval.

2.3.2 Weibull. See García-Pérez & Alcalá-Quintana (2007). We used α =
0.5, β = 3 for the flat setting and α = 0.7, β = 9 for the steep setting:

�(s|α, β ) = 1 − λ − (1 − γ − λ) exp
(
−10β(s−α)

)
.

2.3.3 Beta. This is another type of � that follows a c.d.f. model. While
Beta’s behavior is similar to Logistic and Weibull in specific landmarks, its
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general behavior is different. We used α = 0.14, β = 0.27 for the flat setting
and α = 0.40, β = 0.74 for the steep setting:

�(s|α, β ) = γ + (1 − γ − λ)

∫ s
0 xα−1(1 − x)β−1dx∫ 1
0 xα−1(1 − x)β−1dx

.

2.3.4 Hölder. This function satisfies the basic hypotheses on �, but con-
trary to previous �, it is not a classical c.d.f. and therefore grants the pos-
sibility of testing the robustness of the different adaptive procedures even
further. We used α = 1.1, β = 2.1, s′ = 0.5, and m′ = 0.25 for the flat setting
and α = 0.7, β = 2, s′ = 0.4, m′ = 0.6 for the steep setting:

�(s|α, β, s′, m′) = max
(
min

(
m′ + 1s>s′ |s − s′|α − 1s<s′ |s − s′|β, 1 − λ

)
, γ

)
.

2.4 Simulation Parameters. In our simulations, for each of the psycho-
metric functions described in section 2.3, the settings used for the 2-AFC
and Yes/No frameworks are described above in section 2.1. All adaptive
procedures detailed in section 2.2 were evaluated with three different stim-
uli budgets: 50, 100, and 200. This allowed us to reproduce different ex-
perimental constraints. Importantly, all chosen values were relatively small
in order to limit the influence of fatigue and of learning effects that could
interfere with the experiment (Wichmann & Hill, 2001a).2 Each simulation
was run 100 times. When reported, p-values were obtained using the Mann-
Whitney U-test, and the 95% confidence intervals were obtained using the
1.96 standard deviation half width.

3 Results

3.1 Detailed Comparison. We begin by comparing the performance of
each adaptive procedure for each setting. Figures 2 and 3 (resp. 4 and 5, 6
and 7, and 8 and 9) show the distribution of Accuracy (ŝ − s∗) and Regret
(|�(ŝ) − �(s∗)|) over 100 runs for the Weibull (resp. Logistic, Beta, and
Hölder) psychometric functions for both frameworks (Yes/No, 2-AFC) with
the three stimuli budgets T = 50, 100, and 200. An interactive tool to help the
visualization of these results can be found at comparall.herokuapp.com.

3.2 Yes/No Experiment.

3.2.1 Weibull Function. DOS, GP, and Staircase achieved comparable
Accuracy and Sweat Factor performance for all values of T (see Figure 2).

2
Note that Audiffren (2021b) has performed an analysis for larger values of T (T >

1000) to assess the empirical convergence rate of different methods. This study has shown
that the DOS performs significantly better than its counterparts.
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348 J. Audiffren and J.-P. Bresciani

Figure 2: Distribution of Accuracy and Regret over 100 runs in the Weibull
Yes/No setting. White dots (resp. whiskers) represent the average values (resp.
1.96 standard deviation). The ideal value for Accuracy and Regret is 0, repre-
sented by a dashed line.

The Accuracy of the QuestPlus and PsiMethod was slightly worse (p <

0.01), while the Sweat Factor of the QuestPlus was significantly worse
(p < 0.01). Interestingly, the distribution of Accuracy for QuestPlus was bi-
modal, and each mode corresponded to a set of parameters (flat and steep).
The Accuracy of QuestPlus was comparable to that of other methods for
the steep function and mildly worse for the flat function (p < 0.01). While
most observations still hold for the Regret distribution, the Regret of the
PsiMethod was comparable to that of model-free methods, while Quest-
Plus had a significantly higher Regret than all other procedures (p < 0.01).
This illustrates that QuestPlus has a more complex grid of hyperparameter
to optimize, which translates into a slower convergence rate.

3.2.2 Logistic Function. Interestingly, all three model-free methods (DOS,
Staircase, and GP) achieved comparable Accuracy and Sweat Factor per-
formance for T = 50 and T = 100, while the Staircase was slightly worse
for T = 200 (p < 0.01) (see Figure 3). The QuestPlus procedure had a sig-
nificantly worse Sweat Factor in all cases (p < 0.01) but similar Accuracy
for T = 100 and T = 200 (p < 0.01). The Accuracy and Sweat Factor of the

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/34/2/338/1982827/neco_a_01461.pdf by R
am

ona M
archand on 15 February 2022



Model Based or Model Free? 349

Figure 3: Distribution of Accuracy and Regret over 100 runs in the Logistic
Yes/No setting. White dots (resp. whiskers) represent the average values (resp.
1.96 standard deviation). The ideal value for Accuracy and Regret is 0, repre-
sented by a dashed line.

PsiMethod were comparable to those of DOS and GP for all values of T.

These differences are even more apparent in the Regret distributions: while
DOS, PsiMethod, and GP had comparable Regret, QuestPlus and Staircase
were significantly worse for T = 100 and T = 200 (p < 0.01). Overall, the
poor performance of QuestPlus can be explained by the fact that its Weibull
prior is not accurate in these simulations (Logistic functions), as well as by
its slower convergence rate. Interestingly, while the PsiMethod also has a
Weibull prior, it achieved one of the best results for this setting.

3.2.3 Beta Function. All model-free methods (DOS, GP, and Staircase), as
well as QuestPlus, achieved comparable Accuracy and Sweat Factor perfor-
mance for all stimuli budgets (T = 50, 100, and 200), while the PsiMethod
showed significantly worse Accuracy (p < 0.01) (see Figure 4). The pattern
of performance was similar regarding the Regret metric. Specifically, DOS
had a better Regret for T = 50 (p < 0.01) and a similar Regret for T = 100
and T = 200, while the PsiMethod had a worse Regret with the same set-
tings (p < 0.01).
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Figure 4: Distribution of Accuracy and Regret over 100 runs in the Beta Yes/No
setting. White dots (resp. whiskers) represent the average values (resp. 1.96 stan-
dard deviation). The ideal value for Accuracy and Regret is 0, represented by a
dashed line.

3.2.4 Hölder Function. Similar to the Beta function, all methods but the
PsiMethod achieved comparable Accuracy for T = 50, 100, and 200 (see Fig-
ure 5). The Accuracy and Regret of the PsiMethod were significantly worse
for T = 100 and T = 200 (p < 0.01). In all cases, QuestPlus had a significantly
worse Sweat Factor (p < 0.01) and a significantly worse Regret for T = 50
(p < 0.01).

3.3 2-AFC Experiment.

3.3.1 Weibull Function. In line with the results obtained in the Yes/No
setting, DOS and Staircase achieved comparable Accuracy and Regret (see
Figure 6). Interestingly, they achieved better Regret than in the Yes/No ex-
periments (p < 0.01) despite a mildly worse Accuracy. This is due to the
fact that (1) � is flatter around μ∗ = 0.707 compared to μ∗ = 0.5, and (2)
μ∗ is closer to 1. Thus, overestimating s∗ leads to a lower Regret. As op-
posed to that, GP achieved worse Accuracy and Regret (p < 0.01). More-
over, the Accuracy of the QuestPlus method was significantly better than in
the Yes/No setting and better than that of the other methods (p < 0.01).
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Figure 5: Distribution of Accuracy and Regret over 100 runs in the Hölder
Yes/No setting. White dots (resp. whiskers) represent the average values (resp.
1.96 standard deviation). The ideal value for Accuracy and Regret is 0, repre-
sented by a dashed line.

3.3.2 Logistic Function. The pattern of results was very similar to that
observed for the Weibull function. In particular, QuestPlus achieved bet-
ter Accuracy than the other methods, while having similar Regret (see
Figure 7). Regarding the model-free methods, DOS had a better Accuracy
than its counterparts while having a similar Regret. GP had significantly
worse Accuracy and Sweat Factor for all values of T (p < 0.01), but no sta-
tistically significant difference was found for its Regret. The PsiMethod
achieved worse Accuracy and Regret than DOS and QuestPlus for T = 50
and T = 100, and comparable performance for T = 200. Finally, and similar
to the Weibull setting, all methods achieved a lower Regret compared to the
Yes/No setting. This highlights the fact that � is significantly flatter in the
2-AFC setting than in the Yes/ No setting, as γ = 0.5.

3.3.3 Beta Function. Here, DOS, Staircase, and PsiMethod achieved com-
parable Accuracy and Regret, while QuestPlus and GP achieved worse
Accuracy for T = 50 and T = 100 (p < 0.01). Regret was comparable among
all methods for T = 200 (see Figure 8).
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Figure 6: Distribution of Accuracy and Regret over 100 runs in the Weibull 2-
AFC setting. White dots (resp. whiskers) represent the average values (resp. 1.96
standard deviation). The ideal value for Accuracy and Regret is 0, represented
by a dashed line.

3.3.4 Hölder Function. In this 2-AFC experiment, all three model-free
methods achieved comparable Accuracy and Regret for all values of T (see
Figure 9). PsiMethod and QuestPlus had worse Accuracy and Regret for
T = 50 and T = 100 but similar performance compared to their model-free
counterparts for T = 200.

3.4 Global Analysis. The previous results show that DOS and Stair-
case generally achieved comparable results on all tested settings regarding
Accuracy and Regret, while GP frequently had slightly worse results than
its model-free counterparts. This may been explained by the fact that GP
aims at estimating the entire � function instead of the threshold. It there-
fore requires more stimuli and converges more slowly. As opposed to that,
the performance of the PsiMethod varied significantly between settings.
Specifically, while the PsiMethod achieved good results, for example, the
Logistic Yes/No setting, its performance drastically worsened in the Beta
and Hölder Yes/No framework (when its Bayesian model is widely incor-
rect). Interestingly, QuestPlus exhibited different behavior: its performance
was significantly less variable than that of the PsiMethod while being
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Figure 7: Distribution of Accuracy and Regret over 100 runs in the Logistic 2-
AFC setting. White dots (resp. whiskers) represents the average values (resp.
1.96 standard deviation). The ideal values for Accuracy and Regret is 0, repre-
sented by a dashed line.

generally slightly worse. The difference observed between the QuestPlus
and the PsiMethod might be explained by the fact that QuestPlus has sig-
nificantly more parameters to estimate than the PsiMethod. It therefore
requires more observations before reaching an accurate estimation of the
threshold. But this also provides more robustness to QuestPlus than to the
PsiMethod, and it allows it to perform significantly better in a wider range
of setting.

Table 1 displays the average Accuracy (unsigned), Regret, and Sweat
Factor, aggregated over all combinations of parameters, experimental set-
tings, and simulation runs. This global analysis confirms the trend observed
with each psychometric function. In particular, model-free methods had
better average Accuracy and Regret than model-based methods, as model-
based procedures performed poorly in some settings. This was especially
true for the PsiMethod, whose average Accuracy was particularly poor in
the Beta and Hölder Yes/No setting. Note that while the PsiMethod had
the best Sweat Factor in the Yes/No setting, its Accuracy and Regret were
significantly worse than the model-free methods. Overall, DOS and Stair-
case methods had comparable values of absolute Accuracy, with a slight
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Figure 8: Distribution of Accuracy and Regret over 100 runs in the Beta 2-AFC
setting. White dots (resp. whiskers) represent the average values (resp. 1.96 stan-
dard deviation). The ideal value for Accuracy and Regret is 0, represented by a
dashed line.

advantage for DOS, while DOS strongly outperformed its competitors with
respect to the Regret metric in almost all cases (the only exception be-
ing Yes/No T = 50). Finally, GP performance was slightly worse than its
model-free counterparts, which can be explained by the fact that contrary
to what has been done in previous work with very specific settings such as
for audiograms (Gardner, Malkomes et al., 2015), GP kernel and parame-
terization were not finely tuned to �. This was done to illustrate the most
general case in which the experimenter lacks prior knowledge regarding
the � function.

4 Discussion

4.1 Methods Robustness. In our experiments, the model-free proce-
dures (DOS, Staircase, and GP) achieved consistent performance across all
tested psychometric functions and settings. The results obtained with the
QuestPlus and PsiMethod were more variable, particularly in unusual psy-
chometric functions such as the Beta c.d.f. This lower performance is in
line with the results of previous studies that the use of an incorrect prior
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Figure 9: Distribution of Accuracy and Regret over 100 runs in the Hölder 2-
AFC setting. White dots (resp. whiskers) represent the average values (resp. 1.96
standard deviation). The ideal value for Accuracy and Regret is 0, represented
by a dashed line.

may lead to significantly worse estimates (García-Pérez & Alcalá-Quintana,
2007; Hatzfeld et al., 2016). However, when their prior was correct, the
Bayesian methods tended to perform on par with model-free methods. Be-
cause model-free methods do not rely on any prior regarding the shape of
�, on average, they performed better across multiple functions.

4.2 Method Parameters. The QuestPlus, PsiMethods, and GPmethods,
require setting multiple parameters that may have a significant impact on
their performance. For instance, it may be argued that a different sampling
strategy among the sweet points of each method may lead to better results
(Shen & Richards, 2012) or that a better-tuned grid of parameters may im-
prove the performance of the procedures (Song et al., 2017). However, there
is no clear consensus on which one may be optimal, as it has been shown
to depend on the experimental settings and objectives, as well as on the un-
derlying psychometric function (Shen & Richards, 2012; Strasburger, 2001).
In our simulations, we attempted to replicate an arbitrary psychophysical
task, for which the underlying � function might not have been well studied
and the optimal set of parameters is unknown—a common occurrence in
psychophysics research (see Schütz, Braun, Kerzel, & Gegenfurtner, 2008).
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Table 1: Average Absolute Accuracy, Regret and Sweat Factor over All Simula-
tions, for All Settings, for the Yes/No (Top) and 2-AFC (Bottom) Experiments.

Setting T Avg. Metric DOS Staircase PsiMethod QuestPlus GP

Yes/No 50 Abs. Accuracy 0.034 0.026 0.118 0.078 0.087
Sweat Factor 0.102 0.081 0.080 0.150 0.097
Regret 0.95 0.087 0.152 0.158 0.113

100 Abs. Accuracy 0.024 0.024 0.110 0.051 0.059
Sweat Factor 0.075 0.075 0.042 0.091 0.077
Regret 0.073 0.086 0.149 0.106 0.088

200 Abs. Accuracy 0.018 0.026 0.119 0.047 0.044
Sweat Factor 0.053 0.075 0.029 0.073 0.058
Regret 0.053 0.085 0.141 0.087 0.065

2-AFC 50 Abs. Accuracy 0.039 0.052 0.083 0.075 0.135
Sweat Factor 0.124 0.116 0.120 0.145 0.184
Regret 0.084 0.085 0.109 0.106 0.132

100 Abs. Accuracy 0.025 0.030 0.070 0.057 0.093
Sweat Factor 0.096 0.073 0.107 0.104 0.133
Regret 0.066 0.069 0.089 0.082 0.107

200 Abs. Accuracy 0.018 0.022 0.068 0.055 0.049
Sweat Factor 0.064 0.079 0.065 0.074 0.092
Regret 0.048 0.070 0.058 0.066 0.078

Note: The best value for each metric and stimulus budget is highlighted in bold.

In this setting, the advantage of methods that required a small number of
parameters (such as the Staircase) or no parameters at all (such as DOS) is
nonnegligible.

4.3 Bayesian Priors. While methods that use Bayesian priors and a large
number of parameters might yield some disadvantages in the settings stud-
ied in this work, they can be very effective under a different set of assump-
tions. Recently, Gardner, Malkomes et al. (2015) showed that with the cor-
rect model, GP can be used to diagnose noise-induced hearing loss (NIHL)
with as little as 30 stimuli, a very small fraction of the hundreds of stimuli
typically used in regular audiometric tests. Note, however, that this is no-
tably because the NIHL setting has been extensively studied in the past, so
that many properties of its psychometric functions are agreed on and can
be used to improve the results. This, unfortunately, is not the case for all
psychophysics settings.

4.4 Dos and Staircase. The two procedures that displayed the best
global performance in our simulations are the Staircase (Levitt, 1971) and
DOS (Audiffren, 2021b). The Staircase is one of the most commonly used
adaptive procedures in psychophysics, and the good accuracy observed
with our simulations is in line with the results reported in previous stud-
ies (Hatzfeld et al., 2016). However, the Staircase requires choosing an
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appropriate sequence of step sizes to perform optimally, and it is limited
to a small number of target probabilities, such as μ∗ = 0.5 or 0.707 (Brown,
1996). DOS is completely parameter free, it can converge toward any ar-
bitrary target μ∗, and it is significantly better than the Staircase in the 2-
AFC setting, when μ∗ 	= 0.5. Moreover, Audiffren (2021b) has proved strong
theoretical guarantees for DOS, including convergence speed. Importantly,
these guarantees hold under minimal local assumptions on �, whereas to
the best of our knowledge, no similar guarantees exist for other procedures.
Overall, if no strong prior knowledge about � is available, the Staircase and
DOS appear to be the procedures of choice to best estimate the threshold in
psychophysical tasks.

4.5 Psychometric Fields. Note that all previous conclusions only apply
to threshold estimation. For other applications, the DOS and Staircase do
not supersede model-based procedures such as QuestPlus. This is notably
because Bayesian methods are designed to estimate the entire � function,
whereas the DOS and Staircase procedures are targeted toward estimat-
ing s∗. The use of the Staircase to estimate the entire psychometric function
suffers from biases and limitations (Kaernbach, 2001), while the DOS has
not been studied in that context and for that purpose. Similarly, Bayesian
methods can be used on multidimensional psychometric functions (called
psychometric fields) to estimate the level sets of the functions. This is, for
instance, the case with audio signals, when the stimulus can be character-
ized using volume and frequency. Model-free methods such as the DOS and
Staircase cannot easily be extended to this type of setting.
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