Assessment of functional recovery of manual dexterity in non-human primates following a motor cortex lesion using the Brinkman box task

Abstract

Introduction Motor areas and somatosensory areas are densely interconnected and participate together to the motor control, forming the functional sensorimotor system. The primary somatosensory cortex (S1) sends corticospinal projections and somatosensory inputs to the primary motor cortex (M1), contributing to the control of voluntary movements, such as the precision grip. Moreover, the somatosensory system plays a key role in active motor exploration by palpation in the absence of visual feedback A behavioural task was initially developed by Brinkman and Kuypers (1973) to test the precision grip ability in non-human primates and is currently used in an improved version -the modified Brinkman board task- in our laboratory. The animal has to retrieve banana pellets contained in 25 vertically and 25 horizontally oriented wells distributed on a rectangular board

Hypothesis

After a lesion in M1, the sensorimotor system will be affected in parallel with the motor control itself. The resulting impairments can be highlighted with another test derived from the Brinkman board task: the Brinkman box task without vision, which was specifically designed to assess the role of sensory inputs in a precision grip task performed in the absence of visual feedback before and after a lesion of the hand representation of M 1

Results

Material and methods
Brinkman box task

Monkeys

Experiments were conducted on four adult Macaca fascicularis.
When the monkeys reached a behavioural plateau in manual dexterity tests, they were subjected to a permanent cortical lesion, performed unilaterally in the hand representation of M1 by infusion of ibotenic acid. One animal was a control subject (MkRO), one was treated with anti-Nogo-A antibody (Mk-VA)(Hamadjida et al., 2012; Kaeser et al., 2010) and two received an adult neural progenitor cell therapy (Mk-JO and Mk-JA)(Kaeser et al., 2011).

ne-Dominique Gindrat; Cindy Leuthard; Mélanie Kaeser; Alexander F. Wyss and Eric M. Rouil
Unit of Physiology, Department of Medicine, Faculty of Sciences and Fribourg Center for Cognition, University of Fribourg, Fribourg, Switzerland

The Brinkman box task consists of a square board containing 10 vertically and 10 horizontally oriented wells, each filled with a banana pellet.
This board is located in a box whose top can be opened or closed. The task can consequently be performed unimanually with or without visual feedback. Without vision, the task is more challenging, relying mostly on tactile inputs from the fingers and on spatial memory.

Data analysis

Brinkman box data without vision obtained from the contralesional hand were analysed frame by frame (25 frames $/ \mathrm{sec}$) with the software Kinovea. The following parameters were measured:

- Different behaviours and strategies were observed among the tested monkeys to retrieve the pellets before and after the lesion. Therefore, the relevant parameters vary among the animals.

After the cortical lesion, the time course of recovery in a given monkey is different according to the analysed parameters. For example in Mk-JA, whereas the pre lesionpreferentially used orientations of the wrist and finger for the precision grip are quickly regained after the lesion, the animal can no more successfully retrieve the first 6 pellets as fast as before the lesion.

As expected, the level of recovery for the Brinkman box task without vision is usually lowe than the one for the modified Brinkman board task, given that the former is more difficult to perform than the latter (e.g. Mk-RO and Mk-VA).
Using a detailed analysis, it appears that this task is relevant to test the exploratory ability and tactile sense in a lesional context. It highlights the importance of the somatosensory feedback without visual control.

Prospects

- Inclusion of additional animals in each treatment group
- Computation of a composite performance score (Pizzimenti et al., 2007) taking into account the different parameters studied as an global indicator of the ability of the monkeys to perform the task

Study of the reorganisation of the sensorimotor system following a M1 lesion with somatosensory evoked potentials

