pathology in macaque monkeys

Fregosi M., Contestabile A., Hamadjida, A., Badoud, S., Borgognon, S., Cottet, J., Rouiller E.M.

INTRODUCTION

The corticobulbar projection, together with the corticospinal tract (CST), act ir parallel with projections from the brainstem (such as the reticulospinal tract) to ensure direct or indirect control of movement on motoneurons in the spinal cord. In monkeys little is known about the projections coming from the motor cortex on the brainstem as well as on their influence. Previous studies suggested a role of the reticulospinal tract in the control of reaching movement and in the recovery after a lesion of the CST, spinal cord or cerebral cortex.
The aim of the present study was to anatomically analyze the corticobulbar projections coming from different motor cortical areas (premotor cortex (PM) primary motor cortex (M1) and supplementary motor cortex area (SMA)) on th reticular formation of the brainstem, possibly influencing the reticulospina
neurons. We analysed the projections in intact monkeys ($\mathrm{n}=7$, tracer injections neurons. We analysed the projections in intact monkeys ($n=7$, tracer injections in either PM, M1 or SMA) and in monkeys subjected to different pathologies: M1 cortical lesion (PM injection ($n=4$)); spinal cord injury (M1 injection, ($n=5$)) ol Parkinson's disease (PD; tracer injection in either PM ($n=2$) or M1 ($n=2$).

METHODS
The anterograde tracer biotinylated dextran amine (BDA) was injected unilaterally in either PM, SMA or M1 in twenty macaque monkeys (Macaca fascicularis). The corticobulbar projections labeled anterogradelly by BDA were then analyzed in 12 consecutive histological sections ($50 \mu \mathrm{~m}$ thick), 250 micrometers apart. Axons and terminals, including boutons en passant, were then plotted using the software Neurolucida
An adjacent series of 12 sections was stained with Creysil violet revealing Nissl bodies. On these sections we
delineated the brainstem nuclei. delinealed the brainstem nuclei
The Neurolus (Olympus BX40). We used the objective $4 x$ to trace the contours of the sections and the Pyramidal tract, the 10x to trace the axons and finally the 20x to plot the boutons en passant and term
Both series of sections (BDA and Nissl staining) were overlapped in order to match the zone of terminals and the nuclei delineated with Nissl staining
In the group of the intact monkeys ($n=7$), 3 were injected in PM, 3 in M1 and one in SMA; monkeys subjected to cortical lesion of M1 hand area ($n=4$) were injected in PM; animals subjected to MPTP lesion mimicking PD $(n=4)$ were injected in either PM ($n=2$) or
at $C 7 / C 8(n=5 ; S C I)$ were injected in M1.
Statistics were calculated on the basis of the number of boutons in each nucleus and were derived from the Paired t-test/Wilcoxon; ${ }^{*} p \leq 0.05 ;{ }^{* *} p \leq 0.01,{ }^{* * *} p \leq 0.001$ (bilateral comparison).

Injection sites of
BDA tracer into one area of the
motor cortex (PM)

Mk-R13 (BDA injected in PM)

Boutons en
passant and
terminaux
13
3

Stem axons

Boutons en
passant and
terminaux
4
6
8
10
12

Stem axons

䰝
Figure 1: brainstem drawings of coronal sections of Mk-R13 arranged from rostral (section 1) to caudal (section 12). All nuclei are delineated with a different color (see list of abbreviations). Axons located ipsial
located contralaterally are marked in bordeaux. Boutons en passant and terminauxipsilateral to the BDAinjection are marked as green circles whereas the contralateral terminals are marked as blue squares.

D

Figure 3: Histograms showing the total numbers of boutons en passant and terminaux in the whole brainstem (Tot), in its caudal half (C; fro
section 12) and in its rostral half $(R$; from section 1 to section 6). Black bars are for ipsilateral projections and white bars for contralateral ones. Panel A) Histogram rostral half (R, from section 1 to section 6). Black bars are for ipsiateral projections and white bars forcontralateral ones. background) in intact animals, in monkeys subjected to $\mathbf{M 1}$ hand lesion and in PD animals. Panel B) Histogram showing the row data for animals injected in M1 (green background) in intact animals, in monkeys subjected to cervical SCI and in PD animals. Panel C) The same data as in A but normalized. Panel D) The same data as in B but normalized. Normalization was performed with reference to the number of BDA labelled corticospina axons observed above the Decussatio pyramidum.
E

Figure 2: Percentage distribution of boutons across brainstem nuclei. Percentage of boutons en passant or terminauxipsilateral (blue) and contralateral (orange) calculated on
the total number of boutons found in the whole brainstem ipsilaterally or contralaterally to the BDA injection site. In each graph, the sum of all orange bars is 100%. The sum of al the total number of boutons found in the whole brainstem ipsilaterally or contralaterally to the BDA Ainjection site. In each graph, the sum of all orange bars is 100%. The sum of all
blue bars is 100%. The blue frame shows data obtained from animals injected in PM , the pink frame shows data obtained from monkeys injected in SMA and finally the green
frame shows the

RESULTS

The greater number of corticobulbar projections was found in the main nuclei of the Pontomedullary reticular formation (PMRF), namely in PnO, PnC, Gi, IRt and LRt
intact animals injected in either PM or SMA showed denser corticobulbar projections as compared to M1 (Fig. 3A + 3B). For Mk-R13 (PM) on both contralateral and ipsilateral sides the largest percentage of terminals was found in the Gi nucleus. The same was true for Mk-CH (PM); however the three most rostral sections were unavailable for this animal. In contrast, Mk-R12 (PMd) showed a comparable percentage of axonal boutons in PnO+PnC and Gi on both the ipsilateral and contralateral sides (Fig. 2A). Animals injected in M1 showed a large percentage of projections to the ipsilateral Gi and contralateral IRt and LRt. For Mk-93-80 the projections to IRt and LRt was mostly contralateral. Few axonal boutons were found in $\mathrm{PnO}+\mathrm{PnC}$ (Fig. 2B). Mk-M93-81 (SMA) showed the largest percentage of axonal boutons on both sides in both the Gi nucleus and the $\mathrm{PnO}+\mathrm{PnC}$ nuclei (Fig. 2A).
In M1 lesioned monkeys the corticobulbar projections from PM decreased in density (Fig. 3A and 3C), with a majority of boutons in PnO+PnC and Gi nuclei (Fig. 2C). In animals with Parkinson's disease (PD) there was a strong decrease of corticobulbar projections from PM (Fig. 3A), whereas projections from M1 showed a slighter decrease as compared to intact animals (Fig. 3B). In general a comparable number of projections to PnO+PnC and Gi nuclei was observed, even in M1 injected monkeys (Fig. 2D). In SCI animals injected in M1, we
found found an increase of corticobulbar projections, mainly contralateral, in monkeys subjected to anti-Nogo A antibody treatment (Fig. 3B and De majority of corticobulbar projections were observed in Gi nucleus and in IRt + LRt nuclei (Fig. 2E)

CONCLUSIONS

Intact monkeys: The corticobulbar projections originating from PM and SMA are denser then from M1 (Fig. 3C and D). Moreover, the corticobulbar projection from PM and SMA tend to be more prominent on the ipsilateral PMRF than contralaterally; this is the other way around for the corticobulbar projection from M1.
M1 lesion and PD: For both pathologies, there was a decrease of corticobulbar projections (as compared to intact monkeys), from PM after M1 lesion and from both PM and M1 in case of PD (Fig. 3C and D).
Spinal cord injury (SCI): As compared to intact monkeys, no change in the two control SCI monkeys; in contrast, 2 out of 3 anti-Nogo A antibody treated monkeys showed an increase of the corticobulbar projections from M1, with contralateral predominance as well (Fig. 3D).

