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The corticobulbar projection, together with the corticospinal tract 
(CST), act in parallel with projections from the brainstem (such as the 
reticulospinal tract) to ensure direct or indirect control of movement on 
motoneurons in the spinal cord. 
In monkeys little is known about the projections coming from the motor 
cortex on the brainstem as well as on their influence. Previous studies 
suggested a role of the reticulospinal tract in the control of reaching 
movement and in the recovery after a lesion of the CST, spinal cord or 
cerebral cortex.
The aim of the present study was to anatomically analyze and compare 
the corticobulbar projections on the ponto-medullary reticular 
formation (PMRF) of the brainstem, possibly influencing the 
reticulospinal neurons. Corticobulbar projections were previously 
reported in intact monkeys, originating from the premotor cortex (PM), 
the supplementary motor area (SMA) and the primary motor cortex 
(M1): see Fregosi et al., 2017 (EJN). In the present study, we report on 
the changes of the motor corticobulbar projections onto PMRF after 
injury of either the primary motor cortex (MCI), or spinal cord injury 
(SCI), or Parkinson’s Disease like lesions of the nigro-striatal 
dopaminergic system (PD). 

The tracer biotinylated dextran amine (BDA) was injected unilaterally in either 
PM or M1 of thirteen lesioned adult macaque monkeys (Macaca fascicularis). 
The corticobulbar projections anterogradelly labeled with BDA were then 
analyzed in 12 consecutive histological sections (50 µm thick), 250 
micrometers apart. Stem axons and terminals, including boutons en passant, 
were then plotted using the software Neurolucida.
An adjacent series of 12 sections was stained with Cresyl Violet, revealing Nissl 
bodies, was used to delineate the brainstem nuclei. 
The Neurolucida software is connected to a light microscope (Olympus Bx40). 
We used the magnification 40x to trace the contours of the sections and the 
Pyramidal tract, the 100x to trace the axons and finally the 200x to plot the 
boutons en passant and terminaux. For the series of sections stained for Nissl 
we used  12.5x magnification to delineate the nuclei. 
Both series of sections (BDA and Nissl) were overlapped  in order to match the 
zones of BDA staining and the nuclei delineated with Nissl staining.

The effects of three types of lesion were studied:
1) Motor cortex injury (MCI): Neurotoxic (ibotenic acid) lesion of the hand 
representation in the primary motor cortex (M1), as previously reported 
(Hamadjida et al., 2012; Wyss et al., 2013).
2) Spinal cord injury (SCI): Hemisection of the cervical cord at C7 level, as 
previously reported (Freund et al., 2006, 2007, 2009).
3) Parkinson’s Disease like lesions of the nigro-striatal dopaminergic 
system (PD): Repeated low-dose i.m. infusions of MPTP, as previously 
reported (Mounayar et al., 2007; Borgognon et al., 2017).

Statistics to compare the numbers of axonal boutons between the two sides of 
the PMRF were derived from the paired t-test /Wilcoxon tests, represented with 
asterisks: * p ≤ 0.05; **p ≤ 0.01, ***p ≤ 0.001.

Summary of the present study

Functional recovery from central nervous system injury is likely to be 
partly due to a rearrangement of neural circuits. In this context, the 
corticobulbar (corticoreticular) motor projections onto different nuclei of 
the Ponto-Medullary Reticular Formation (PMRF) were investigated in 
thirteen adult macaque monkeys after either, primary motor cortex injury 
(MCI) in the hand area, or spinal cord injury (SCI) or Parkinson's 
Disease-like lesions of the nigro-striatal dopaminergic system (PD). A 
subgroup of animals in both MCI and SCI groups was treated with 
neurite growth promoting anti-Nogo-A antibodies, whereas all PD 
animals were treated with autologous neural cell ecosystems (ANCE). 
The anterograde tracer BDA was injected either in the premotor cortex 
(PM) or in the primary motor cortex (M1) to label and quantify 
corticobulbar axonal boutons terminaux and en passant in PMRF. As 
compared to intact animals, after MCI the density of corticobulbar 
projections from PM was strongly reduced but maintained their laterality 
dominance (ipsilateral), both in the presence or absence of anti-Nogo-A 
antibody treatment. In contrast, the density of corticobulbar projections 
from M1 was increased following opposite hemi-section of the cervical 
cord (at C7 level) and anti-Nogo-A antibody treatment, with 
maintenance of contralateral laterality bias. In PD monkeys, the density 
of corticobulbar projections from PM was strongly reduced, as well as 
that from M1, but to a lesser extent. In conclusion, the densities of 
corticobulbar projections from PM or M1 were affected in a variable 
manner, depending on the type of lesion/pathology and the treatment 
aimed to enhance functional recovery.
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Typical distribution of corticobulbar axonal boutons in PMRF in 6 representative histological sections taken from an MCI monkey (panel A), from a PD monkey (panel B) and from an SCI monkey (panel C). Boutons in  
the ipsilateral PMRF are depicted in green whereas those in the contralateral PMRF are depicted in blue. In addition, BDA-labelled stem axons are shown in blue on the ipsilateral side and in purple contralaterally. For
each monkey, the applied treatment is indicated in parentheses. On each section, the pyramid (Py), when outlined in red, corresponds to the ipsilateral side, with respect to the hemisphere injectedwith BDA (see Fig. 1).
See list of abbreviations. 

Scatter plots of the numbers of corticobulbar boutons observed in the different groups of monkeys subjected to motor cortex lesion (MCI), spinal cord injury (SCI) or MPTP intoxication (PD). For comparison, the data in intact monkeys
(Fregosi et al., 2017) are represented by the range (yellow or light blue area) and the mean value (dashed horizontal line). The yellow area is for data in intact monkeys as a result of BDA injections in PM, whereas the blue area is for
data in intact monkeys as a result of BDA injection in M1. In the monkeys subjected to MCI, SCI or PD, the BDA injection site (PM or M1) is indicated below the graph. Panel A is for the absolute numbers of corticobulbar boutons, whereas
the panel B is for normalized numbers of corticobulbar boutons. Different symbols display either the total or individual numbers of boutons for the ipsilateral or contralateral PMRF (see legend on top of each panel). The presence/absence
of treatment is indicated by filled or open symbols: filled symbols for anti-Nogo-A antibody in MCI or SCI monkeys as well as ANCE treatment in PD monkeys, and open symbols for untreated MCI monkeys or control antibody treated SCI
monkeys, respectively. Asterisks above the circle symbols indicate that the numbers of axonal boutons in PMRF were significantly different between the ipsilateral and contralateral sides of PMRF: * is for p<0.05, ** is for p<0.01, *** is for
p<=0.001, ns is for non-statistically significant difference between the 2 PMRF sides.Normalization (panel B) was performed with reference to the number of BDA labelled corticospinal (CS) axons above pyramidal decussation level.

A: On lateral view of the left hemisphere, reconstruction of the BDA injection site in PM (green) and of the M1 lesion (red) for the MCI monkeys (data derived from Hamadjida et al., 2012). For these PM
injections, in addition to a dense core region (dark green), an additional halo part was visible where a less dense BDA spread was present. B: Lateral view of the hemisphere in PD animals with BDA
injection sites (green) in PM (top two monkeys) or in M1 (bottom two monkeys). C: Lateral view of the right hemisphere in SCI monkeys with BDA injection sites (green) in M1. Next to each hemisphere,
an inset illustrates the cervical  cord lesion (blue or red area) in the same monkey, as seen on a frontal section of the cervical cord (derived from Freund et al., 2007; Beaud et al., 2008, 2012). In each
panel (A, B, C), the treatment applied to each animal is indicated.

Treatments
Two types of treatments to enhance functional recovery post-lesion were tested:

1) Anti-Nogo-A antibody treatment: neutralization of the neurite growth inhibitor Nogo-A, 
applied to the MCI and SCI groups (see Freund et al., 2006, 2007, 2009; Hamadjida et al., 2012; Wyss et al., 2013).

2) Autologous neural cell ecosystems (ANCE): transplantation of adult neural progenitor 
cells derived from a healthy part of the cerebral cortex (see Brunet et al., 2005, 2009; Kaeser et al., 2010, 2011; 

Borgognon et al., 2017). The efficacy of the ANCE treatment in MPTP monkeys in comparison to 
controls was demontrated earlier (see Bloch et al., 2014).

Brief summary of the corticobulbar projection in intact monkeys

The present study aims at assessing possible changes of the 
corticobulbar projection in adult monkeys following lesion, such as MCI, 
SCI or MPTP. This requires a comparison with the corticobulbar 
projection in intact monkeys, as reported recently (Fregosi et al., 2017). 
The normal corticobulbar projection to the Ponto-Medullary Reticular 
Formation (PMRF) is briefly summarized here. First, the corticobulbar 
projection was found to be clearly denser when originating from PM or 
the supplementary motor area (SMA) than from M1. This is clearly 
illustrated in Figure 3 with the comparison of corticobulbar boutons in 
PMRF originating from PM versus M1 (yellow versus blue areas, 
respectively). Second, irrespective of the origin, the corticobulbar 
projection was bilateral although with a predominance on the ipsilateral 
PMRF when originating from PM or SMA and on the contralateral PMRF 
when coming from M1. Third, in PMRF, the main nuclei targeted by the 
corticobulbar projection were the pontine reticular nucleus pars caudalis 
and oralis (PnC and PnO), the gigantocellular reticular nucleus (Gi), as 
well as the lateral and intermediate reticular nuclei (LRt and IRt).

Py

PMRF

M1
PM

Corticobulbar (corticoreticular)
projections from primary motor (M1)
and premotor (PM) cortical areas

V

V

Ipsi

Contra

M1 lesion:
       Projection from PM *

MPTP lesion **:
       Projection from PM
       Projection from M1

Cervical cord hemisection:
       Projection from M1 ***

In intact monkeys

 In control and anti-Nogo-A treated Monkeys

 All monkeys implanted with progenitor cells

 Only in anti-Nogo-A treated monkeys

*
***
**

In intact adult macaques, the corticobulbar projections are denser when
originating from PM than from M1. After unilateral lesion of M1, the projection
from the ipsilesional PM was strongly reduced, both in presence or absence
of anti-Nogo-A antibody treatment. After MPTP lesion (and following cell
therapy), the projections from both PM and M1 also decreased. In contrast,
after cervical cord hemi-section, the projection from M1 increased, but only
in presence of anti-Nogo-A antibody treatment.
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