Quantification of manual dexterity in adult macaque monkey tested during a reach and grasp drawer task

\qquad Fregosi M., Kaeser M., Savidan J, Gindrat A.-D., Chatagny P., Badoud S., Moret V., Roulin C., Rouiller E.M. \& Schmidlin E.

Introduction

- Manual dexterity is a complex motor behavior common to non-human primates and human beings. It is mainly controlled by superior motor centers of the central nervous system (CNS), particularly by the primary motor cortex (M1).
- The quantification of manual dexterity allows to detect and assess precisely functional recovery after brain injury affecting M1 and to differentiate the effects on distal muscles of the forelimb (hand) and more proximal muscles (arm and shoulder).
- We are interested in the precision grip movement which is the opposition between the index finger and the thumb, aiming particularly at measuring the forces developed and the time intervals to perform the task.

The aim of the present work is to quantify the motor performance in a reach and grasp drawer task before and after the lesion of the hand area in the primary motor cortex in Macaca fascicularis.

Methods
We trained eight adult macaque monkeys (2 males and 6 female) to perform the reach and grasp drawer task in which the animals had to pull a drawer against adjustable lowe using one or the other hand inside the usingoneorthe orhand.

- The pulling phase of the drawer was quantitatively assessed by measuring: 1) the grip force to grasp and hold the knob; 2) the load force exerted by the arm to pull and open the drawer
- The drawer is connected to a computer which records three different parameters in time: first the displacement of the drawer, second the force needed to grasp the knob of the drawer and, finally, the force needed to open the drawer (load force) during the task.

Data presented here were derived from 5 behavioral sessions for each level resistance for each animal tested for both hands.

Results

- Our results have shown that maximal grip force and maximal load force increase as a function of the increase of the resistance to the pulling of the drawer.
- In general we can observe a statistical difference between the different resistances tested. This is valid using both hands and for grip and load forces.
- The time needed to open the drawer increases in correlation with the increase of the resistance to the opening.

Behavioral task: Description

Analysis

 placed on markers
scale bar 100 ms .

Conclusions

- The reach and grasp drawer task appears to be good behavioral model to study the movements coordination and the application of forces for the execution of fine hand movement (precision grip)
After the lesion of M1 we expect dramatic changes in the forces applied and in temporal unfolding of the different sequences of the task.

The increased level of resistance to the pulling resulted in strong changes in the forces needed to perform the task and the time interval between the different movement sequences.

The difference between relative resistances 0 and 3 is less affected, possibly because the difference in Newton is not large enough.

Futures perspectives

Cortical lesions of M1 hand area and subsequen analysis of pre- versus post-esion differences, as well as assessment of functional recovery.

Electromyogram (EMG) analysis on animal chronically implanted with subcutaneous electrodes

