High-density scalp somatosensory evoked potential recordings in macaque monkey: development of a minimally invasive tool

UNIVERSITÉ DE GENÈVE

HIGW 🐪

¹ Unit of Physiology, Department of Medicine, University of Fribourg, Fribourg, Switzerland ² Faculty of Medicine, Department of Fundamental Neurosciences, University of Geneva, Geneva, Switzerland ³ Functional Brain Mapping Laboratory, Departments of Clinical and Fundamental Neuroscience, Geneva University Hospital, Geneva, Switzerland

Introduction

Somatosensory evoked potential (SSEP) recordings from the scalp are commonly used in human for clinical applications. They are among others good predictor of outcome after a brain injury such as stroke. Recordings from the scalp with a high-density electrode array are also relevant for research purposes to reveal the time course of evoked topographies.

In the present pilot study, we made a transposition of this simple and minimally invasive tool to macaque monkey, allowing repeated monitoring of the brain activity from the whole scalp surface using a multichannel electrode array. The goal was to address the general feasibility of the technique in order to use it in longer term before and after a neural lesion to investigate a possible cortical reorganisation.

Materials and methods

Experiments were conducted on one young adult macague monkey (*Macaca fascicularis*). Recordings were performed with a customised EEG cap containing 33 electrodes regularly distributed over the scalp while the monkey was anaesthetised (2.5% sevoflurane). Electrical stimulations were delivered separately either to the median nerve at the wrist or to the tibial nerve at the ankle (0.5Hz repetition rate, intensity slightly above the visible motor threshold, total of 75 sweeps).

Data analysis

• Conventional analysis: study of the absolute amplitude and latency of the initial brain stem component recorded over the contralateral brain stem and the main cortical component recorded over the contralateral hand, respectively foot, representation in the sensorimotor cortex.

 Topographical analysis: cluster analysis of the voltage maps (datadriven approach revealing a series of scalp topographies reflecting the steps in information processing).

Prospects

- Extension of this study to further animals, in parallel with behavioural tasks (modified Brinkman board task)
- Location and orientation of the generators with source location algorithms
- EEG recordings in conscious monkey to study the resting state networks

Supported by Swiss National Science Foundation grant 310000-110005 (EMR) and NCCR Neuro

Anne-Dominique Gindrat¹, Charles Quairiaux², Juliane Britz³, Florian Lanz¹, Christoph M. Michel³ and Eric M. Rouiller¹

Results

Conclusion

These preliminary data show that SSEPs can be successfully and reproducibly recorded from a high-density EEG cap in macaque monkey. This minimally invasive method to record large-scale neuronal networks in real-time can be useful if repeated assessment of the cortical activity is desired, for example to study functional damage and recovery after a central nervous system lesion. In this case, topography of SSEPs will allow to assess the possible cortical reorganisation of neuronal networks and relate it to functional recovery. The tool we developed is very relevant in the context of promoting non-invasive approaches also in animal research.

