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The effective transmission and decoding of dynamic
facial expressions of emotion is omnipresent and
critical for adapted social interactions in everyday life.
Thus, common intuition would suggest an advantage
for dynamic facial expression recognition (FER) over
the static snapshots routinely used in most
experiments. However, although many studies
reported an advantage in the recognition of dynamic
over static expressions in clinical populations, results
obtained from healthy participants are contrasted. To
clarify this issue, we conducted a large cross-sectional
study to investigate FER across the life span in order
to determine if age is a critical factor to account for
such discrepancies. More than 400 observers (age
range 5–96) performed recognition tasks of the six
basic expressions in static, dynamic, and shuffled
(temporally randomized frames) conditions,
normalized for the amount of energy sampled over
time. We applied a Bayesian hierarchical step-linear
model to capture the nonlinear relationship between
age and FER for the different viewing conditions.
Although replicating the typical accuracy profiles of
FER, we determined the age at which peak efficiency
was reached for each expression and found greater
accuracy for most dynamic expressions across the life
span. This advantage in the elderly population was
driven by a significant decrease in performance for
static images, which was twice as large as for the
young adults. Our data posit the use of dynamic
stimuli as being critical in the assessment of FER in
the elderly population, inviting caution when drawing

conclusions from the sole use of static face images to
this aim.

Introduction

Human faces convey a wealth of dynamic signals
that are critical for an adequate and rapid categoriza-
tion of the emotional states of others. Yet the vast
majority of studies investigating expression recognition
have relied on static images that commonly display the
apex or the highest state of a given expression. In
everyday life, however, facial expressions are rarely
transmitted and decoded through static snapshots of
internal states. Natural human interactions are a highly
dynamic (and multimodal) phenomenon with faces
evolving over time while transmitting distinct signals to
convey diverse emotional states. Dynamic expressions
provide observers with additional cues related to their
inherent temporal properties, such as their unfolding
speed (slow vs. fast; Bould & Morris, 2008; Bould,
Morris, & Wink, 2008; Kamachi et al., 2001), rise time
(from the neutral to the highest state; R. E. Jack,
Garrod, & Schyns, 2014; Recio, Schacht, & Sommer,
2013) or intensity (Bould et al., 2008), critical for an
adequate categorization. Therefore, dynamic faces are
richer and ecologically more valid depictions of the way
expressions are encountered in everyday life compared
to static images (e.g., Johnston, Mayes, Hughes, &
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Young, 2013; Paulmann, Jessen, & Kotz, 2009;
Trautmann, Fehr, & Herrmann, 2009). Interestingly,
from an evolutionary perspective, humans have had
more experience with dynamic faces as static pictures
only appeared during the last century with the advent
of photography and the rapid expansion of digital tools
and social networks. The decoding of static faces is also
a learnt behavior that develops throughout life. As the
human visual system is, from birth on, steadily
stimulated by dynamic signals from faces with minimal
exposure to static faces, common intuition would
suggest the existence of a particular expertise to decode
such events with the presence of an advantage for the
recognition of dynamic over static expressions.

Previous studies that have attempted to investigate
this question have yielded inconsistent findings (for a
review, see Alves, 2013; Fiorentini & Viviani, 2011;
Kätsyri, 2006; Krumhuber, Kappas, & Manstead,
2013). Some behavioral studies have revealed an
advantage (e.g., Ambadar, Schooler, & Cohn, 2005;
Cunningham & Wallraven, 2009; Giard & Peronnet,
1999; Knappmeyer, Thornton, & Bülthoff, 2003;
Paulmann et al., 2009; Wehrle, Kaiser, Schmidt, &
Scherer, 2000), whereas others have revealed that the
benefits of dynamic cues in facial expression recogni-
tion may be minimal (e.g., Gold et al., 2013) or
inexistent (e.g., Fiorentini & Viviani, 2011). These
contrasting findings suggest that the dynamic advan-
tage for facial expression recognition is not as
straightforward as it may appear. Rather, it seems that
the physical properties of the stimuli presented as well
as clinical or neuropsychological conditions influence
the extent to which dynamic displays lead to processing
benefits (Ambadar et al., 2005; Bould et al., 2008;
Wallraven, Breidt, Cunningham, & Bülthoff, 2008).

Several studies have shown that the beneficial effects
of dynamic events are particularly relevant in subop-
timal situations in which the physical information
available is limited (Ambadar et al., 2005; Bould et al.,
2008), deteriorated, or blurred (Ehrlich, Schiano, &
Sheridan, 2000; Kätsyri & Sams, 2008; Wallraven et al.,
2008). For example, Wallraven et al. (2008) found that
dynamic events increased recognition accuracy of
computer-animated facial expressions whose texture or
shape were systematically degraded. Similarly, by
comparing the ability of observers to recognize
expressions from schematic and natural faces, Kätsyri
and Sams (2008) and Ehrlich et al. (2000) discovered a
recognition advantage for dynamic expressions with
schematic but not natural faces. Along the same lines,
other studies have revealed that dynamic events provide
compensatory cues when subtle facial expressions are
presented (Ambadar et al., 2005; Bould et al., 2008).
With subtle expressions, additional temporal informa-
tion may be essential to disambiguate the uncertainty
introduced by the lack of intensity.

Similarly, an advantage is noticeable when it comes
to clinical conditions as dynamic information provides
compensatory cues in suboptimal situations. Dynamic
presentations facilitate the recognition of facial ex-
pressions in adults and children with intellectual
disability (Harwood, Hall, & Shinkfield, 1999), perva-
sive developmental disorder (Uono, Sato, & Toichi,
2010), and autism (Back, Ropar, & Mitchell, 2007;
Gepner, Deruelle, & Grynfeltt, 2001; Tardif, Lainé,
Rodriguez, & Gepner, 2007; but see Kätsyri, Saalasti,
Tiippana, von Wendt, & Sams, 2008, for Asperger
syndrome). In neuropsychology, several brain-injury
studies have shown increased recognition performance
when dynamic expressions were used (Adolphs, Tranel,
& Damasio, 2003; Humphreys, Donnelly, & Riddoch,
1993; Richoz, Jack, Garrod, Schyns, & Caldara, 2015).
For example, Humphreys et al. (1993) reported the case
of an agnosic patient who was significantly impaired at
identifying facial identity and facial expressions when
exposed to static images. In contrast, his performance
was proficient when asked to judge a subset of facial
expressions (i.e., smiling, frowning, or surprise) from
dynamic faces animated by light dots. On the same line,
we recently investigated the ability of a prosopagnosic
patient—the well-studied case of PS—with multiple
and extensive brain lesions in the occipitotemporal
cortex to recognize facial expressions from static and
dynamic faces. Our findings revealed that the patient
PS was selectively impaired in decoding static expres-
sions while showing normal performance for the
decoding of dynamic emotional expressions. This
observation favors the existence of distinct representa-
tional systems for static and dynamic expressions or
dissociable cortical pathways to access them (Richoz et
al., 2015). Noteworthy, the advantage for processing
dynamic faces in PS is related to a suboptimal
information use for static (i.e., bias toward the mouth)
compared to dynamic faces (i.e., all face features; Fiset
et al., 2017).

Although several neuropsychological studies have
shown that the dynamic properties of human facial
expressions provide significant processing advantages,
other behavioral studies involving healthy observers
suggest that this might not be the case (Bould &
Morris, 2008, for expressions of high intensity; Christie
& Bruce, 1998; Fiorentini & Viviani, 2011; Gold et al.,
2013; Jiang et al., 2014; Kamachi et al., 2001,
experiment 2). By using a threshold model, Fiorentini
and Viviani (2011), for example, reported that neither
reaction times nor identification accuracy were more
accurate for the dynamic as compared to the static
expressions. Similar findings were reported in a later
study by Gold et al. (2013). Their results revealed that
recognition rates were nearly identical when partici-
pants were exposed to static, dynamic, shuffled
(temporally randomized expressions), or reversed
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expressions. This suggests that the temporal properties
provided by moving faces are not necessary for
observers to reliably categorize emotional expressions.
Altogether, these studies suggest that a healthy visual
system seems to be powerful enough to efficiently
recognize intense expressions from static faces, leaving
only a nonsignificant benefit to the processing of
dynamic facial expressions. By contrast, in clinical
conditions, the muscular movements associated with
the temporal unfolding of an expression may force the
observers to shift their attention to different facial
features. This may enhance attention and motor
simulations (A. Wood, Lupyan, Sherrin, & Niedenthal,
2016; A. Wood, Rychlowska, Korb, & Niedenthal,
2016) in fragile or neurologically impaired face systems,
which may explain the increased performance with
dynamic signals in these populations.

Interestingly, there are stages in healthy observers
during which the perceptual system is also particularly
fragile or immature. For example, from early infancy to
late adolescence, the brain undergoes a wide array of
anatomical and functional changes as it develops (e.g.,
Blakemore, 2012; Blakemore & Choudhury, 2006;
Casey, Tottenham, Liston, & Durston, 2005; Durston
et al., 2001). Similarly, during normal aging, the
cognitive functions decline, which is induced by age-
related loss of synaptic contacts, neural apoptosis (e.g.,
Raz, 2000; Rossini, Rossi, Babiloni, & Polich, 2007),
reduction in cerebral blood flow (e.g., Chen, Rosas, &
Salat, 2011), or volume reduction in different brain
regions (e.g., amygdala, hippocampus, frontal cortex;
Calder et al., 2003; C. R. Jack et al., 1997; Navarro &
Gonzalo, 1991; Ruffman, Henry, Livingstone, &
Phillips, 2008). Considering the increased vulnerability
of the brain under neural architectural changes
(Andersen, 2003; Hof & Morrison, 2004), it is possible
that healthy young children and normal aging adults
also benefit from the presentation of dynamic faces.
However, only a few developmental studies have
compared facial expression recognition in children
using both static and dynamic stimuli (Nelson,
Hudspeth, & Russell, 2013; Nelson & Russell, 2011).
These studies yielded equivocal results, none of them
revealing a significant advantage for dynamic over
static stimuli; two studies even pointed to differences
favoring static stimuli (Nelson & Russell, 2011; Widen
& Russell, 2015). Nevertheless, most of these studies
tested facial expression recognition with the use of a
single actor and provided additional information about
face, body movements, and vocal intonations, which
may have facilitated expression recognition. In the
aging literature, a small number of studies examined
facial expression recognition with static and dynamic
faces (Grainger, Henry, Phillips, Vanman, & Allen,
2015; Krendl & Ambady, 2010; Sze, Goodkind,
Gyurak, & Levenson, 2012). Although most of these

studies pointed to a dynamic advantage for the
recognition of facial expressions, they (a) did not use a
database of static and dynamic stimuli controlled for
the amount of low–level visual information carried over
time (Grainger et al., 2015; Sze et al., 2012), (b) were
limited to a subset of emotional expressions (Krendl &
Ambady, 2010), (c) included participants in only one
condition (Krendl & Ambady, 2010), or (d) relied on
dynamic movies that were not displaying natural
expressions (Grainger et al., 2015). These methodo-
logical issues considerably limit firm conclusions on the
potential benefits of dynamic cues for the recognition
of facial expressions in elderly people.

Developmental studies have reported an early tuning
to culturally specific expressions (Geangu et al., 2016;
for a review, see Caldara, 2017) and emotion-depen-
dent differences in the development of facial expression
recognition abilities with some expressions being
recognized earlier (e.g., happiness) than others (e.g.,
fear) (Durand, Gallay, Seigneuric, Robichon, & Bau-
douin, 2007; Gao & Maurer, 2010; Gross & Ballif,
1991; Herba & Phillips, 2004; Rodger, Vizioli, Ouyang,
& Caldara, 2015). Similarly, studies with elderly people
have shown that the recognition of some expressions
decreases with increasing age, and the recognition of
others remains stable or even improves (Calder et al.,
2003; MacPherson, Phillips, & Della Sala, 2002;
Sullivan & Ruffman, 2004b; Zhao, Zimmer, Shen,
Chen, & Fu, 2016). Most of these studies were,
however, conducted with static posed images, and only
little is known about the effects of aging on the
recognition of genuine dynamic emotional expressions.

To fill this gap in the developmental literature, we
investigated whether the advantage for dynamic stimuli
extends to other populations with immature (i.e., young
children) or fragile (i.e., elderly adults) face-processing
systems. We conducted a large cross-sectional study
involving more than 400 observers (age range 5–96) in
order to investigate facial expression recognition from
early to elderly age. Observers performed categoriza-
tion tasks of the six basic expressions (anger, disgust,
fear, happiness, sadness, and surprise) in three condi-
tions: static, dynamic, and shuffled (temporally ran-
domized frames; Gold et al., 2013). Importantly, we
relied on a specific database of static, dynamic, and
shuffled stimuli created by Gold et al. (2013). Our
experimental choice was driven by the fact that these
authors also used an ideal observer model to objectively
measure the amount of low-level physical information
carried by the stimuli. It is worth noting that most
studies investigating the presence of a dynamic
advantage (e.g., Ambadar et al., 2005; Bould & Morris,
2008; Bould et al., 2008; Cunningham & Wallraven,
2009; Fiorentini & Viviani, 2011; Kätsyri & Sams,
2008) directly compared participants’ recognition rates
in the static and dynamic conditions without control-
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ling the amount of low-level information physically
available to the observers. As mentioned by Gold et al.,
the absence of an objective measure of stimulus
information makes it difficult, in most cases, to
determine whether increased recognition rates are due
to adequate categorization skills, to the amount of
physical information available, or to a combination of
both factors. By comparing human expression recog-
nition scores with the performance of a statistically
ideal observer, Gold et al. reported that their dynamic
stimuli did not provide additional low-level informa-
tion than what was already offered by their static
snapshots (for additional information, see Gold et al.,
2013). In addition to this approach, we modeled the
relationship between age and facial-expression recog-
nition by using a hierarchical Bayesian approach with a
step-linear model. Our results revealed emotion-specific
advantages for dynamic stimuli. More specifically,
although participants displayed nearly identical cate-
gorization performance for the static and dynamic
expressions of fear and sadness, all the other expres-
sions were more readily labeled as correct when
featuring dynamic displays. Overall, the results of this
study provide a comprehensive and detailed view of the
way in which static and dynamic expressions are
recognized across the human life span.

Material and methods

The experiment script, raw data, and analysis codes
are open to access on Github (https://github.com/
iBMLab/Static_dynamic).

Participants

A total of 444 healthy observers participated in the
current study. Subjects who did not respond at least
once to all expressions on the first condition/block were
excluded from the analyses (N ¼ 32), leaving a total
number of 412 participants. Their exclusion is based on
the difficulty to determine whether they actually did not
recognize the expression presented or did not correctly
understand the task. A future research paper will
investigate the systematic errors of the participants that
were excluded.

We intended to collect data from 20 participants in
each age group ranging from 5 to 96 years of age. The
groups were comprised as follows: 5- to 6-year-olds (N
¼ 27, 17 females), 7- to 8-year-olds (N¼ 24, 17 females),
9- to 10-year-olds (N¼ 22, 11 females), 11- to 12-year-
olds (N ¼ 22, 14 females), 13- to 14-year-olds (N ¼ 24,
10 females), 15- to 16-year-olds (N¼ 21, eight females),
17- to 18-year-olds (N¼ 21, 16 females), 19- to 20-year-

olds (N¼ 31, 27 females). From the age of 21 to the age
of 96, six different groups were created: 21- to 30-year-
olds (N ¼ 31, 23 females), 31- to 40-year-olds (N ¼ 23,
13 females), 41- to 50-year-olds (N ¼ 33, 22 females),
51- to 60-year-olds (N¼ 30, 18 females), 61- to 80-year-
olds (N¼ 31, 25 females), and 81- to 96-year-olds (N¼
40, 30 females).

All participants had normal or corrected-to-normal
vision with no neurological or psychiatric history.
Children were recruited from primary and high schools
in the area of Fribourg, Switzerland. Parental consent
was required for all children under the age of 16.
Participants older than 16 were recruited at the
University of Fribourg through social networks or
advertisements. Observers from the university obtained
course credits for their participation. All participants
signed a consent form that described the main goals of
our experiment.

Elderly people were recruited and tested in senior
housing in the Fribourg region. We used the Mini-
Mental State Examination (Folstein, 1975) in order to
determine the eligibility of the elderly people aged 60
and over. This brief cognitive screening test, which has
been extensively used and validated since its creation in
1975, allows the assessment of different cognitive
functions, such as memory, orientation, attention,
language, and recall, through 11 questions with a
maximum score of 30. Elderly people with a score
below 24 were excluded from our study (N¼ 3) as this
score has been set as the most commonly used cutoff
score for cognitive impairment (Mitchell, 2009). The
ethical committee of the department of psychology of
the University of Fribourg approved the study reported
here.

Stimuli

We used the same stimuli as those used by Gold et al.
(2013). In order to create their database, Gold et al.
asked eight actors (four females) to reproduce the six
basic facial expressions of emotion as naturally as
possible (i.e., anger, disgust, fear, happiness, sadness,
and surprise; Ekman & Friesen, 1976). The facial
expressions of emotion started from a neutral state and
naturally evolved into a full expression. Their apex
state (i.e., the point at which an expression reached its
fully articulated state) was determined by two raters.

The dynamic faces evolved from a neutral state to a
full-blown expression at a frame rate of 30 frames/s. All
expressions reached their apex within 30 frames. If the
fully articulated expression was reached before 30
frames, one to four supplementary apex frames were
appended, but as the actors were asked to maintain the
apex for several seconds, this happened for only seven
out of 48 movies (for more details, see Gold et al.,
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2013). Faces were presented in black and white and
cropped at the hairline to present only the internal
facial features. Previous experiments have shown that
external features attract children’s attention (Leitzke &
Pollak, 2016). Moreover, the faces were centered and
seen through an oval aperture, which was placed in the
middle of a gray-colored background. The borders of
the oval aperture were slightly blurred in order to
produce a progressive transition between the back-
ground and the faces (Gold et al., 2013). The faces were
resized from the original experiment and each mea-
sured 768 pixels in height and 768 pixels in width. They
subtended a visual angle of 128 on the screen at a
viewing distance of 65 cm. All faces were equated for
luminance and contrast.

Based on these dynamic sequences, Gold et al. (2013)
generated two other sets of stimuli: a set of frozen
images (static condition) and a set of temporally
randomized dynamic frames (shuffled condition) (see
Figure 1; supplementary videos related to this article
can be found under the specific links). In the static
condition, movies were created by taking the apex
frame of each dynamic sequence and replicating it 30
times in a row. In the shuffled condition, movies were
generated by randomly selecting the individual frames
of the dynamic sequences. This condition was originally
designed to assess whether human observers were
sensitive to the temporal development of an expression
over time (i.e., order of frames). The results reported by
Gold et al. revealed that recognition efficiency did not
significantly differ between the dynamic and shuffled
expressions in young adults, suggesting that young
adults are insensitive to the temporal properties
associated with the unfolding of an expression.

We normalized all stimuli for their low-level
properties and the amount of energy sampled over time
even for the static condition for every frame. More
concretely, the video stimuli were normalized across all
frames and all expressions using the SHINE toolbox
with the default option (Willenbockel et al., 2010). In
order to partly account for the differences in visual
input between static and dynamic stimuli, we computed
the raw pixel intensity differences between each frame
of the dynamic movies. We, thus, added these intensity
differences to each frame at random permuted loca-
tions in the static images. It is worth noting that
normalization after adding the noise would defeat this
purpose as the difference between each frame will not
be straightforwardly comparable with the natural low-
level differences in the dynamic stimuli. However, with
our approach, we could ensure that all the frames for
all the faces in all conditions have equal low-level
properties (luminance and contrast). The stimuli were
displayed on a color liquid-crystal display with a
resolution of 1,4403 900 pixels and a refresh rate of 60
Hz. The whole experiment was programmed in

MATLAB (MATLAB 2014B; MathWorks, Natick,
MA) using the Psychophysics Toolbox (PTB-3; Brai-
nard, 1997; Kleiner et al., 2007).

Procedure

Participants were told that they would see faces
expressing different kinds of emotions on a computer
screen and their task would be to categorize them as
accurately as possible, according to the six following
possibilities: anger, disgust, fear, happiness, sadness,
and surprise.

In order to familiarize children with the faces and
ensure that they understood the conceptual meaning of
all expressions, we presented them with printed sheets
of the different expressions and asked them to tell us
how the person presented on the image was feeling.

All participants sat 65 cm away from a computer
screen in a quiet room. Each trial started with a white
fixation cross presented at the center of the screen for
500 ms. The stimuli were then presented in a random
order, one at a time, in the center of the computer
screen for a duration of 1 s each (for a schematic
representation of the procedure, see Figure 2). We used
the same stimuli presentation time in all three

Figure 1. Examples of the stimuli used in our study. Face

identities and facial expressions used for the study with each

actor (column) and the six expressions (row: anger, disgust, fear,

happiness, sadness, surprise). Please note that we inserted

noise in the static condition in order to normalize the amount

of energy sampled over time across conditions. For an

illustrative purpose, see an example for anger for the static

(http://perso.unifr.ch/roberto.caldara/JoV/Anger-static.mov),

dynamic (http://perso.unifr.ch/roberto.caldara/JoV/Anger-

dynamic.mov), and shuffled conditions (http://perso.unifr.ch/

roberto.caldara/JoV/Anger-shuffled.mov). The stimuli were

adapted with permission from Gold et al. (2013).
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conditions in order to fully replicate the study by Gold
et al. (2013). Note that a presentation time of 1 s was
also previously used in other studies with dynamic faces
(Adolphs et al., 2003; Recio et al., 2013; Richoz et al.,
2015). After each presentation, a response window was
displayed on the screen and remained there until the
participant answered. Observers categorized each
stimulus by using a computer keyboard on which we
labeled the keys accordingly. They could press a key
labeled ‘‘I don’t know’’ if they were unsure, had not had
enough time to see the expression, or did not know the
answer. We decided to introduce an ‘‘I don’t know’’
option in order to reduce the noise and response bias
produced by the lack of such a key. We gave our
participants as much time as required to categorize the
expressions and told them that judgment accuracy was
important, not the response time. Children under the
age of 10, participants who were not familiar with
computers, and elderly people over 65 gave their
answers verbally to the experimenter who keyed them
in. No feedback was provided. The stimuli were
blocked by condition. Each condition consisted of two
blocks of 48 trials (eight actors, six expressions)

presented twice (96 expressions for each condition) for
a total of 288 trials. Participants took part in all three
conditions in a counterbalanced random order. The
testing was done in one session for adolescents and
adults, two or three sessions for participants under 10
or over 65. Before starting the testing phase, partici-
pants completed 12 practice trials for each condition.

Data analysis

Data analysis was performed in Python using
Jupyter Notebook. Summary statistics by groups are
displayed as confusion matrices (Supplementary Figure
S1A through E) and line plots (Figure 4) for each
condition.

Bayesian modeling was performed using PyMC3
version 3.2, and the results were displayed using Seaborn
and Matplotlib. The main aim of the current study was
to determine the underlying function between expres-
sion-recognition ability and age, conditioned on the
basis of different types of visual stimuli. More specifi-
cally, we were interested in modeling expression-

Figure 2. Schematic representation of the procedure. Each trial began with a white fixation cross that was presented for 500 ms,

followed by a face presented for 1 s, which expressed one of the six basic facial expressions of emotion: anger, disgust, fear,

happiness, sadness, and surprise. After each trial, participants were asked to categorize the previously seen expression.
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recognition ability as a function of age, expression, and
stimuli type (static, dynamic, or shuffled):

Recognition Ability ¼ f age; expression; stimuli typeð Þ:

Here, recognition abilities were measured using the
correct identification (i.e., hit). Importantly, as the

target function f is a nonlinear function, in order to
capture the increase and then the decrease in the
recognition abilities displayed in the data, we con-
structed a simple step-linear function with two linear
equations. The first equation captures the increase in
recognition abilities before a break point, defined as the

Figure 3. A conceptual representation of the step-linear model. We are interested in the posterior distribution of the peak efficiency

and the contrasts between the posterior distribution of different slopes and the different intercepts.

Figure 4. Accuracy across age groups for each expression in the three different conditions. Error bars show 95% bootstrap confidence

interval for the mean. Age groups were created as follows: 5–6, 7–8, 9–10, 11–12, 13–14, 15–16, 17–18, 19–20, 21–30, 31–40, 41–50,

51–60, 61–70, 71–80, 81–96.
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momentum in age capturing peak efficiency, whereas
the second equation captures the decrease in recogni-
tion abilities.

f1 age; expression; stimuli typeð Þ; age, s;

f2 age; expression; stimuli typeð Þ; age � s:

Here, the break point s is expressed as a latent
variable that is estimated from the model. Both f1 and
f2 are linear functions of age during the recognition of
specific expressions and stimuli type. Thus, the slope of
the function f1 and f2 (coefficient for age) captures the
change in recognition abilities, whereas the intercept of
the function captures the general recognition abilities
before and after the age s. We estimated the general
dynamic advantage by computing contrasts of the
intercepts between the different stimuli type (i.e., static,
dynamic, shuffled) and quantified the interaction
between stimuli type and age (i.e., whether there is a
stronger dynamic advantage in young/old age) by
computing contrasts of the slopes. Importantly, con-
sidering that the break point s could occur at different
age stages among the expressions, we modeled each
expression independently, thus turning the target
function into

f1ðage; stimuli typejexpressionÞ; age, s;

f2ðage; stimuli typejexpressionÞ; age � s;

where recognition ability of different types of stimuli is
a step-linear function of age conditioned on a specific
expression.

In practice, we formulated functions f1 and f2 as
logistic regressions with the function output being the
success probability p in each trial in the binomial
distribution. The total number of correct responses for
one participant during the presentation of one expres-
sion and one stimuli type follows a binomial distribu-
tion:

k;Binomial p; nð Þ:
Thus, this is an extended beta-binomial model with

latent variables. The full model is formulated as below:

i for each task (dynamic, static, shuffle), j for each
participant.

Hyper-priors of the slope
lb ; Student t(3, 0, 10)
rb ; Half Normal (10)

Hyper-prior of the breakpoint
s ; Uniform (0, 100)

Hyper-prior of the recognition ability at s
h ; Uniform (0, 1)
j ; Uniform (0, Nt)

(reparameterized as the mode of beta distribution)

a¼ h 3 (j – 2) þ 1
b¼ (1 � h) 3 (j – 2) þ 1

For each stimuli type i � static, dynamic, shuffled:

Prior of the recognition ability at s
hi ; Beta (a, b)

Priors of the break point
si ; Normal (s, 10)

Priors of the slopes (a indicates before age s)
ba;b
i ; Normal (lb, rb)

The intercepts before and after age s
ba;bi ¼ logit(hi)� si 3 ba;b

i
Linear function and invlogit transform

bi, Intercepti ¼
ba
i ; b

a
i if age, si

bb
i ; b

b
i if age � si

� �

hi,j ¼ bi � agej þ Intercepti
ŷi,j ¼ invlogit(hi,j)

Observed accurate categorizations
ki,j ; Binomial (ŷi,j, ni,j)

As shown above, the slope of each condition is
regularized using a weakly informative hyper-prior. The
prior of each slope is a normal distribution with the
mean distributed as a zero mean Student t distribution
with three degrees of freedom and 10 standard
deviations and the standard deviations distributed as a
half-normal distribution. The hyper-prior of the break
point s is a uniform distribution from 0 to 100, which is
the overall mean of the condition-specific break point
that follows a normal distribution with 10 standard
deviations as prior. Importantly, the intercept of the two
linear functions f1 and f2 is determined by the
recognition ability h at the break point s. The condition-
specific recognition ability hi follows a Beta distribution
as prior. Moreover, we reparameterized the beta
distribution by the mode h and the concentration j
(Kruschke, 2014, cf. equation 9.4, p. 223). Here, the
mode h follows a uniform prior between zero and one,
and j follows a uniform prior with two as minimum and
the number of trials as maximum.

The probabilistic model was built using PyMC3, and
we sampled from the posterior distribution using NUTS
with automatic differentiation variational inference
initialization. We ran four Markov chain Monte Carlo
chains with 3,000 samples each; the first 1,000 samples
were used for tuning the mass matrix and step size for
NUTS and were discarded following this. Model
convergence was diagnosed by computing Gelman and
Rubin’s (1992) convergence diagnostic (R-hat), exam-
ining the effective sample size, inspecting the mixing of
the traces, and checking whether there is any divergent
sample that has been returned from the sampler.

From the posterior distribution, we estimated (a) the
peak efficiency, namely the point at which observers’
recognition performance reaches its maximum before
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declining; (b) the steepness of increase and decrease in
recognition abilities; (c) differences in the steepness of
increase and decrease between different conditions (e.g.,
dynamic vs. static); and (d) the overall processing
advantage of the dynamic over the static and the
shuffled stimuli. By performing statistical inference
directly on the full posterior distribution, we were able to
properly quantify the dynamic stimuli effects and their
associated uncertainty. In fact, the slopes of the linear
relationship before and after the peak efficiency could
provide estimations of the developmental trajectory and
can be useful to make predictions on the performance of
any new participant from any age. Here, however, we
were only interested in comparing the slope difference
between dynamic and static faces. A conceptual
representation of the model is provided in Figure 3.

Results

The group average categorization performance for
each condition is presented in Figure 4. The nonlinear
relationship between age and recognition ability is
clearly demonstrated with differences among condi-
tions clearly visible for some expressions. When the
model returns a concave pattern, we refer to the break
point as a peak efficiency. This value relates to the
point at which recognition performance reaches its
apex, also relating to the age at which observers are the
most efficient.

For the Bayesian modeling, trace plots, posterior
distributions for the key parameters in the model,
contrasts of interest, and full numerical reports of the
parameter estimations are available in the supplemen-
tary results. Below, we report the key findings of the
step-linear model.

Anger

The posterior model fit for the raw data is shown in
Figure 5. By sampling the full posterior distribution, we
estimated that the overall recognition ability for the
expression of anger peaks at age 36.13 [22.23, 51.21],
(bracket shows 95% highest posterior density interval).
The posterior expectation of the age at which observers
are the most efficient is given as follows: dynamic 39.17
[31.03, 46.84], static 35.70 [23.59, 46.41], and shuffled
33.22 [18.13, 49.62]. The overall recognition ability of
anger at peak efficiency is 0.605 [0.350, 0.872], and the
average peak accuracy for each condition is given as
follows: dynamic 0.660 [0.627, 0.696], static 0.592
[0.554, 0.628], and shuffled 0.539 [0.489, 0.587]. On
average, participants showed better performance in the
dynamic condition as compared to the static and the
shuffled conditions, both before (dynamic–static: 0.075
[0.042, 0.106], dynamic–shuffled: 0.096 [0.060, 0.132])
and after (dynamic–static: 0.043 [0.012, 0.072], dy-
namic–shuffled: 0.085 [0.051, 0.118]) peak efficiency. In
contrast, the difference between the static and shuffled
conditions is quite small (shuffled–static before peak
efficiency:�0.021 [�0.061, 0.019], after peak efficiency:
�0.042 [�0.070, �0.013]). The slopes of the step-linear
functions are the following: dynamic 0.0069 [�0.0011,
0.0156], static 0.0107 [0.0003, 0.0239], shuffled 0.0040
[�0.0072, 0.0180] before peak efficiency and dynamic
�0.0251 [�0.0300,�0.0201], static�0.0183 [�0.0236,
�0.0123], shuffled �0.0159 [�0.0211, �0.0108] after
peak efficiency. Moreover, the differences of the slope
across different conditions are mostly negligible; most
of the posterior contrasts are distributed around zero
with the exception of the contrast: dynamic–shuffled:
�0.0092 [�0.0162,�0.0020] after peak efficiency (Fig-
ure 5).

Figure 5. Anger. The posterior model fit (solid line) for the expression of anger with the individual performance (scatter plot) and the

group average performance (dots with error bars) is given here. The overall peak efficiency is shown as the red vertical dashed line,

and the condition-specific peak efficiencies are represented by the black dashed lines.
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Disgust

The overall recognition ability for the expression of
disgust peaks at age 18.87. The posterior expectation of
the age at which observers are the most efficient is given
as follows: dynamic 18.02 [15.38, 20.75], static 19.71
[18.19, 21.38], and shuffled 18.14 [16.55, 19.67]. The
overall recognition ability of the expression of disgust
at peak efficiency is 0.644 [0.380, 0.920], and the
average peak accuracy for each condition is the
following: dynamic 0.665 [0.644, 0.687], static 0.724
[0.702, 0.744], and shuffled 0.500 [0.475, 0.522]. On
average, participants showed better performance in the
dynamic and static conditions as compared to the
shuffled condition, both before (dynamic–shuffled:
0.199 [0.160, 0.240], static–shuffled: 0.183 [0.146,
0.217]) and after (dynamic–shuffled: 0.191 [0.170,
0.214], static–shuffled: 0.152 [0.125, 0.177]) peak
efficiency. The difference between the dynamic and the
static conditions is quite small before peak efficiency
(dynamic–static:�0.016 [�0.037, 0.072]); it is, however,
substantial after peak efficiency (0.040 [0.013, 0.069]).
The slopes of the step-linear functions are the
following: dynamic 0.0494 [0.0318, 0.0680], static
0.0824 [0.0671, 0.0993], shuffled 0.0686 [0.0511, 0.0860]
before peak efficiency and dynamic �0.0104 [�0.0130,
�0.0078], static �0.0225 [�0.0254,�0.0196], shuffled
�0.0128 [�0.0152,�0.0102] after peak efficiency.
Moreover, the slopes of the static condition are steeper
than the ones in the dynamic and shuffled conditions.
The contrasts of the slopes before peak efficiency are
given as follows: dynamic–static:�0.0330 [�0.0577,
�0.0096], shuffled–static:�0.0138 [�0.0360, 0.0123];
and the contrasts of the slopes after peak efficiency are
the following: dynamic–static: 0.0121 [0.0084, 0.0161],
shuffled–static: 0.0097 [0.0059, 0.0135] (Figure 6).

Fear

The overall recognition ability of the expression of
fear peaks at around age 20.83. The posterior
expectation of the age at which observers are the most
efficient is given as follows: dynamic 20.87 [18.71,
23.18], static 19.72 [17.63, 21.43], and shuffled 21.79
[20.17, 23.51]. The overall recognition ability of fear at
peak efficiency is 0.446 [0.168, 0.697]; the average peak
accuracy for each condition is the following: dynamic
0.399 [0.372, 0.430], static 0.416 [0.390, 0.443], and
shuffled 0.526 [0.494, 0.557]. On average, participants
showed better performance in the shuffled condition
compared to the other two conditions, both before
(shuffled–dynamic: 0.056 [0.013, 0.099], shuffled–static:
0.055 [0.024, 0.083]) and after (shuffled–dynamic: 0.094
[0.071, 0.118], shuffled–static: 0.113 [0.089, 0.135]) peak
efficiency; however, the difference between the dynamic
and static conditions is quite small (dynamic–static
before peak efficiency:�0.002 [�0.043, 0.033], after
peak efficiency: 0.018 [�0.003, 0.040]). The slopes of all
conditions are comparable: dynamic 0.0706 [0.0546,
0.0867], static 0.0927 [0.0747, 0.1139], shuffled 0.0913
[0.0764, 0.1056] before peak efficiency and dynamic
�0.0151 [�0.0186,�0.0115], static�0.0189 [�0.0224,
�0.0157], shuffled �0.0176 [�0.0213, �0.0141] after
peak efficiency. The maximum contrasts of the slopes
before peak efficiency is given as follows: dynamic–
static: �0.022 [�0.0473, 0.0022], and the maximum
contrasts of the slopes after peak efficiency is the
following: dynamic–static: 0.0038 [�0.0010, 0.0086]
(Figure 7).

Happiness

Unlike for the other facial expressions, the overall
recognition ability for the expression of happiness is

Figure 6. Disgust. The posterior model fit (solid line) of the expression of disgust with the individual performance (scatter plot) and

the group average performance (dots with error bars) is given here. The overall peak efficiency is shown as the red vertical dashed

line, and the condition-specific peak efficiencies are represented by the black dashed lines.
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near ceiling at a very young age, declining slowly
throughout the life span. Therefore, the age of the peak
efficiency could not be identified for this facial
expression. Nonetheless, our model identifies a break
point at around age 57.98 with a large uncertainty.
Importantly, the accuracy rate estimated at this break
point is not the apex in recognition performance, but
rather the start of the decline (i.e., the model did not
return a concave pattern). The posterior expectation of
the age at this break point is given as follows: dynamic
61.27 [24.18, 93.42], static 50.25 [35.90, 62.01], and
shuffled 62.22 [21.95, 81.00]. The overall recognition
ability of this expression at the break point is 0.855
[0.664, 0.999] with dynamic 0.895 [0.819, 0.972], static
0.898 [0.868, 0.931], and shuffled 0.660 [0.541, 0.896].
Overall, participants performed better in the dynamic
condition as compared to the static and shuffled
conditions, both before (dynamic–static: 0.040 [0.027,
0.054], dynamic–shuffled: 0.106 [0.063, 0.143]) and after

(dynamic–static: 0.060 [0.029, 0.095], dynamic–shuf-

fled: 0.269 [0.203, 0.319]) the break point. Participants

also performed better in the static than in the shuffled

condition (static–shuffled before the break point: 0.066

[0.018, 0.105] and after the break point: 0.209 [0.156,

0.255]). The slopes of the step-linear functions are given

as follows: dynamic �0.0248 [�0.0335, �0.0121], static
�0.0078 [�0.0172, 0.0007], shuffled �0.0306 [�0.0375,
�0.0163] before the break point and dynamic �0.0239
[�0.0387,�0.0023], static�0.0298 [�0.0381,�0.0217],
shuffled�0.0175 [�0.0355, 0.0026] after the break

point. The differences of the slopes across the different

conditions are mostly negligible. Most of the posterior

contrasts are distributed around zero with the largest

contrasts being the following before the break point:

dynamic–static:�0.0170 [�0.0297, �0.0036] and shuf-

fled–static: �0.0228 [�0.0353, 0.0087] (Figure 8).

Figure 7. Fear. The posterior model fit (solid line) of the expression of fear with the individual performance (scatter plot) and the

group average performance (dots with error bars) is presented here. The overall peak efficiency is shown as the red vertical dashed

line, and the condition-specific peak efficiencies are represented by the black dashed lines.

Figure 8. Happiness. The posterior model fit (solid line) of the expression of happiness with the individual performance (scatter plot)

and the group average performance (dots with error bars) is presented here. The overall break point is shown as the red vertical

dashed line, and the condition-specific break points are represented by the black dashed lines.
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Sadness

The overall recognition ability for the expression of
sadness peaks at the age of 28.96. The posterior
expectation of the age at which observers are the most
efficient is given as follows: dynamic 27.87 [21.44,
33.90], static 28.12 [23.50, 32.62], and shuffled 30.52
[26.05, 34.74]. The overall recognition ability of sadness
at peak efficiency is 0.638 [0.408, 0.888]; the average
peak accuracy for each condition is the following:
dynamic 0.605 [0.572, 0.636], static 0.631 [0.602, 0.660],
and shuffled 0.653 [0.622, 0.681]. The categorization
accuracy rates of all conditions are comparable both
before and after peak efficiency. The maximum
contrasts of the average performance before peak
efficiency is given as follows: shuffled–static 0.0277
[�0.0011, 0.0561]; the maximum contrasts of the
average performance after peak efficiency is the
following: shuffled–static 0.0097 [�0.0156, 0.0362].
Similarly, all conditions show comparable slopes:
dynamic 0.0075 [�0.0031, 0.0181], static 0.0235 [0.0117,
0.0347], shuffled 0.0179 [0.0079, 0.0285] before peak
efficiency and dynamic �0.0223 [�0.0262,�0.0186],
static�0.0265 [�0.0306,�0.0223], shuffled�0.0302
[�0.0346,�0.0261] after peak efficiency. The maximum
contrast between slopes before peak efficiency is the
following: dynamic–static:�0.0160 [�0.0320,�0.0010];
the maximum contrast after peak efficiency is given as
follows: dynamic–shuffled: 0.0079 [0.0022, 0.0137]
(Figure 9).

Surprise

The overall recognition ability of surprise peaks at
age 22.47. The posterior expectation of the age at which
observers are the most efficient is given as follows:
dynamic 23.55 [20.52, 26.91], static 24.30 [20.36, 28.26],

and shuffled 19.34 [17.34, 21.76]. The overall recogni-
tion ability of surprise at peak efficiency is 0.692 [0.466,
0.953]; the average peak accuracy for each condition is
dynamic 0.758 [0.735, 0.783], static 0.700 [0.673, 0.725],
and shuffled 0.575 [0.552, 0.599]. On average, partici-
pants showed the best performance in the dynamic
condition, and the worst in the shuffled condition. The
results were the following: dynamic–static: 0.075 [0.048,
0.101], static–shuffled: 0.093 [0.058, 0.123] before peak
efficiency and dynamic–static: 0.107 [0.082, 0.133],
static–shuffled: 0.172 [0.146, 0.195] after peak efficien-
cy. The slopes of the step-linear functions are dynamic
0.0442 [0.0315, 0.0565], static 0.0442 [0.0311, 0.0577],
shuffled 0.0530 [0.0381, 0.0692] before peak efficiency
and dynamic �0.0126 [�0.0164,�0.0092], static
�0.0175 [�0.0213,�0.0133], shuffled�0.0190 [�0.0220,
0.0163] after peak efficiency. The slope between age and
accuracy is similar across all conditions before peak
efficiency, whereas after peak efficiency, the dynamic
condition shows the most gradual slope: static–
dynamic:�0.0048 [�0.0104, 0.0004], shuffled–dynamic:
�0.0064 [�0.0109,�0.0018] (Figure 10).

To highlight the key results of our study, we
illustrated the results of the previous statistical analyses
comparing the dynamic and static tasks in Figure 11.
The posterior estimation of peak efficiency ages in the
recognition of all the expressions except happiness are
summarized in Figure 11A. The estimated age is the
youngest for disgust and fear, whereas the oldest for
anger (which is also the expression driving the largest
uncertainty in the estimation). Moreover, the dynamic
and static conditions do not significantly modulate this
effect.

The differences in recognition between the dynamic
and static conditions are summarized in Figure 11B,
which shows performance both before and after the
estimated peak efficiency. As reported below, the
recognition performance of the facial expression of

Figure 9. Sadness. The posterior model fit (solid line) of the expression of sadness with the individual performance (scatter plot) and

the group average performance (dots with error bars). The overall peak efficiency is shown as the red vertical dashed line, and the

condition-specific peak efficiencies are represented by the black dashed lines.

Journal of Vision (2018) 18(9):5, 1–27 Richoz, Lao, Pascalis, & Caldara 12

Downloaded From: https://jov.arvojournals.org/pdfaccess.ashx?url=/data/journals/jov/937491/ on 09/08/2018



surprise shows the largest dynamic advantage, whereas
fear is, on average, similar in both conditions.

Discussion

Our results present a fine-grained developmental
tracking of human observers’ ability to recognize the six
basic emotions when presented with varying temporal

properties: dynamic, static, and shuffled. Previous
studies in the literature examined expression recognition
by using arbitrary age groups: 10-year bins (Williams et
al., 2009), stages of life (Horning, Cornwell, & Davis,
2012), or largely different age groups (e.g., 18–30, 58–70,
Calder et al., 2003) while revealing either expression-
recognition improvement (Rodger et al., 2015) or decline
(Calder et al., 2003; MacPherson et al., 2002; Malatesta,
Izard, Culver, & Nicolich, 1987; Moreno, Borod,
Welkowitz, & Alpert, 1993; Ruffman et al., 2008;

Figure 10. Surprise. The posterior model fit (solid line) for the expression of surprise with the individual performance (scatter plot)

and the group average performance (dots with error bars) are given here. The overall peak efficiency is shown as the red vertical

dashed line, and the condition-specific peak efficiencies are represented by the black dashed lines.

Figure 11. Summary of the key findings. (A) The posterior estimation of peak efficiency ages in the recognition of different facial

expressions of emotion. (B) The posterior estimation of the dynamic advantage before and after the peak efficiency age (represented

by the average difference between the correct categorization of dynamic and static facial expressions). The recognition of the happy

expression could not be identified as the performance for this facial expression was already at ceiling in the early age we tested. The

dots show the posterior expectation, the bold horizontal line shows the 50% highest posterior density, and the thin horizontal line

shows the 95% highest posterior density. Nonoverlapping lines indicate a significant difference between two conditions.
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Sullivan & Ruffman, 2004a). In contrast, our approach
innovates by estimating the continuous developmental
trajectory of facial expression recognition (from increase
to decline) by considering age as a continuum, ranging
from 5 to 96 years.

Using a Bayesian approach, we estimated for each
condition and each expression individually the associ-
ated uncertainty and (a) the peak efficiency, namely the
point at which observers’ recognition performance
reaches its maximum before declining; (b) the steepness
of increase and decrease in recognition abilities; (c)
differences in the steepness of increase and decrease
between different conditions (e.g., dynamic vs. static);
and (d) the overall processing advantage of the
dynamic over the static and the shuffled stimuli. We
now discuss, in turn, each of these findings and their
implications.

Recognition trajectory across development:
Increase, peak efficiency, and decrease

Our findings reveal unique developmental profiles
and peak efficiency for the static, dynamic, and shuffled
versions of each individual expression. Herein, we focus
on the dynamic and static trajectories and the
differences between both conditions in a more detailed
manner (i.e., static and dynamic). The results of the
shuffled condition are briefly considered at the end of
the discussion.

Efficiency: Increase

In both static and dynamic conditions, the sharpest
rises in accuracy were observed for fear followed by
disgust and, to a lesser extent, surprise. These findings
mirror the results of a previous developmental study
that investigated the effects of age on the development
of emotion processing in children, revealing that
increasing age produced significant improvements in
the recognition of fear and disgust (Herba & Phillips,
2004). We observed a more gradual increase for sadness
and anger but only in the static condition. Finally, we
did not observe any increase for the expression of
happiness regardless of the experimental condition.

The steepest increase observed for fear might be
accounted for by the very low recognition rates
observed for this expression in young children, reaching
only 13% in the 5–6 age group in the static condition
(15% in the dynamic condition; Supplementary Figure
S1A). The expression of fear has been regularly
reported in developmental (Herba & Phillips, 2004;
Rodger et al., 2015; Widen, 2013), neuropsychological
(Adolphs et al., 2003; Richoz et al., 2015), and
behavioral studies (Calder et al., 2003) as being the

most difficult expression to effectively recognize among
all the expressions—a difficulty that is puzzling
considering the evolutionary importance of an ade-
quate and rapid categorization of this expression for
survival. Importantly, however, a poor performance for
the recognition of some expressions does not neces-
sarily mean that these expressions are not detected as
recent studies have shown a dissociation between these
two processes (Smith & Rossit, 2018; Sweeny, Suzuki,
Grabowecky, & Paller, 2013). For example, Smith and
Rossit (2018) have shown that the emotional expression
of fear is better detected than recognized. Also, among
the basic expressions, fear is probably the one that
transmits the strongest multisensory perceptual cues.
Multisensory and contextual information, such as
environmental threats, may, therefore, play a crucial
role in the decoding of this expression and be essential
for an adequate categorization.

Consistent with our findings, fear has been observed
to display a sharp increase in some prior developmental
studies (Herba, Landau, Russell, Ecker, & Phillips,
2006; Vicari, Reilly, Pasqualetti, Vizzotto, & Caltagir-
one, 2000), and other studies have revealed more
gradual improvements (Gao & Maurer, 2009; Thomas,
De Bellis, Graham, & LaBar, 2007) or stable, albeit low
task performance from early childhood to adulthood
(Rodger et al., 2015). Differences across studies may be
attributed to methodological considerations and task
differences as recognition rates have been proven to be
task dependent (e.g., Montirosso, Peverelli, Frigerio,
Crespi, & Borgatti, 2010; Vicari et al., 2000) with
performance variations occurring even within the same
study when the task is changed (Vicari et al., 2000).
Importantly, the findings reported here provide further
evidence that the recognition of fear has a special status
within the framework of facial-expression recognition
(Richoz et al., 2015; Rodger et al., 2015).

Disgust also showed a steep increase in recognition
accuracy, following a similar trajectory as fear. In line
with our findings, steep improvements from childhood
to adulthood were previously observed for disgust in a
study by Rodger et al. (2015), which measured the
quantity of information necessary for an observer to
accurately recognize facial expressions, as well as in
earlier studies that investigated expression recognition
with matching (Herba et al., 2006) or labeling tasks
(Vicari et al., 2000). As mentioned by Vicari et al.
(2000), the steep improvement observed for disgust in
children aged 5 to 10 may occur owing to the greater
lexico-semantic abilities in older children. It might also
be plausible that the very distinctive facial configura-
tions of disgust convey signals about potentially
contaminated food. These signals are crucial from an
evolutionary perspective and, hence, the need to rapidly
improve in the detection of this expression in order to
stay away from harmful substances.
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Finally, our findings also revealed a sharp increase
for surprise in both the static and dynamic conditions.
Interestingly, the expression of surprise was already
well recognized in very young children aged 5 to 6 with
recognition rates of 60% for the dynamic stimuli (55%
for the static images; Supplementary Figure S1A). High
recognition rates in young children would rather accord
with a more gradual developmental trajectory as
suggested by prior research that investigated the
recognition of surprise from 5 up to 18 years of age
(Rodger et al., 2015). Interestingly, however, the sharp
increase observed for surprise in the current study may
be accounted for by the very high recognition rates
observed for this expression in participants above the
age of 18, reaching up to 79% in the 21–30 age group
for the dynamic stimuli (67% for the static images;
Supplementary Figure S1C).

We also observed a gradual increase for anger and
sadness although only in the static condition. These
findings are generally consistent with previous reports
(Herba et al., 2006; Rodger et al., 2015, for sad; Vicari
et al., 2000). In the dynamic condition, children aged 5
to 6 were nearly as effective in recognizing anger (62%;
Supplementary Figure S1A) as young adults aged 17–
18 (64%; Supplementary Figure S1B), 21–30 (66%;
Supplementary Figure S1C), or 31–40 (66%; Supple-
mentary Figure S1D). The same pattern was observed
for sadness with identical recognition rates for young
children aged 5–6 (56%) and young adults in the 17–18
age group.

Finally, our results did not reveal an increase for
happiness in either condition with task performance
remaining stable over ages and with our peak efficiency
revealing the peak of the decline. The absence of
improvement observed for happiness may be explained
by the very high recognition accuracy already found in
young children for this expression, which leaves little
scope for improvement. Our findings for happiness are
consistent with previous studies that revealed that
children as young as 5 years of age recognize the
expression of happiness just as effectively as adults
(Gao & Maurer, 2009; Gross & Ballif, 1991; Herba &
Phillips, 2004) even when the presentation time was as
fast as 500 ms (Rodger et al., 2015). In order to capture
the increase in recognition performance for happiness,
we should have started earlier, under 5 years of age, or
adopt alternative approaches. Limiting the available
information by degrading the signal (Rodger et al.,
2015), controlling for spatial frequency use (Gao &
Maurer, 2011), or modifying the intensity of facial
expressions (Gao & Maurer, 2009, 2010; Rodger, Lao,
& Caldara, 2018) all represent alternative techniques to
potentially reveal the improvement in the recognition
of the emotional expression of happiness. Therefore,
future studies using those approaches represent a
promising route to assess and eventually reveal

developmental differences in the trajectory of the
decoding of happiness.

Additionally, it is worth noting that our findings
revealed differences in the steepness of increase between
the static and dynamic conditions for the expressions of
disgust and sadness, the increase being steeper with the
static stimuli. These findings might be accounted for by
the low recognition rates found for the static images of
disgust and sadness in very young children. An
exposure to static images of disgust and sadness is
rather uncommon in everyday life, particularly for
young children, whereas an exposure to the dynamic
versions of these expressions might be more frequent
for children when their schoolfellows or siblings dislike
some particular food they have to eat (disgust) or when
they cry or express their sorrow (sadness).

Peak efficiency

The data-driven identification of the peak efficiency,
the point at which observers’ recognition performance
reaches its optimum before declining, revealed a series
of novel interesting findings. To the best of our
knowledge, this is the first study that has effectively
isolated the age at which observers are the most
efficient for the recognition of the basic facial
expressions of emotion across the life span. We
observed the earliest peak efficiencies for both the static
and dynamic expressions of disgust (18–20 years) and
fear (19–21 years) in young adults, followed by surprise
(23–25 years) and sadness (27–28 years). Peak efficiency
for the static expression of anger was found at 35 years
of age, whereas the recognition of its dynamic version
was reached at 39 years. The latest break point that
emerged from our data was observed for the dynamic
expression of happiness at around 61 years of age (50
years for the static version). It is worth noting that the
break points found for each expression were nearly the
same in both conditions with the exception of anger
and happiness, which reached their break points later
with dynamic expressions.

There are two explanations for the very early peak
efficiencies found for fear and disgust. First, as
mentioned above, from an evolutionary perspective,
these two expressions convey important signals about
potential dangers or harmful substances, both impor-
tant for survival. Disgust and fear can, therefore, be
expected to reach their peak rapidly in order to ensure
survival. Second, for fear and disgust, the point in time
at which the peak efficiency emerges may be driven by
the inherent properties of those expressions. Stimuli
that are difficult to recognize for young people might be
even more difficult for elderly people as difficult tasks
are likely to be more sensitive to cognitive decline
(Calder et al., 2003; Ruffman et al., 2008). Changes in
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the slope of the lines may, therefore, be expected to
occur earlier with difficult tasks. We examined response
biases for each expression, computing confusion
matrices across different age groups (see Supplemen-
tary Figure S1A through E). The confusion matrices
found for fear and disgust indeed revealed that these
two expressions were particularly difficult for our
observers to identify. Disgust was commonly confused
with anger with confusion rates ranging up to 28% in
the 5–6 age group for the dynamic stimuli (Supple-
mentary Figure S1A) and 20% for the 71–80 age group
(Supplementary Figure S1E). Previous studies also
reported marked confusion between disgusted and
angry faces, which were interpreted as a general bias
toward angry faces (Recio et al., 2013). Such a bias
could explain the stable and high recognition rates
found in the current research for angry faces from
childhood onward. Other confusion was observed
between fear and surprise. In line with previous studies
(Rodger et al., 2015), fear was found to be the most
frequently confounded expression among all age
groups with confusion rates reaching up to 53% for the
dynamic expression of surprise in the 5–6 age group
(Supplementary Figure S1A) or even 63% in the 71–80
age group (Supplementary Figure S1E). As mentioned
by Calder et al. (2003), age-related cognitive decline
may reinforce these confusions due to perceptual or
conceptual difficulties (i.e., fear and surprise are
conceptually very close and share facial signals that are
morphologically similar; Delis et al., 2016). Note also
that the reverse confusion was much less common.
When presented with surprise, the confusion rates
observed for fear reached only 3% for the dynamic
stimuli (4.6% for the static expressions) in the 5–6 age
group and 5% (3.3% for the static expressions) in
elderly people aged 71–80.

Interestingly, our findings also revealed a later
emergence of the peak efficiency for anger compared to
the other expressions. As mentioned before, recogni-
tion abilities for anger showed no increase in the
dynamic condition, task performance being already
high in young children, and displayed only a slight
increase for the static condition, recognition rates being
also high in young children. A potential, although
speculative, explanation for this observation may lie in
the fact that we are daily exposed to the expression of
anger, arguing with our partners, children, colleagues—
an exposure that might postpone the recognition
decrease of this expression and, therefore, the changes
in the slope of the line.

Finally, the latest break point found for happiness
may be accounted for by the ceiling effect found for this
expression from childhood onward.

Altogether, this second set of findings offers novel
insights into the development of human facial-expres-
sion recognition. As observed, facial-expression recog-

nition develops following emotion-dependent
trajectories that do not necessarily all reach their peak
efficiency in early adulthood as predicted by previous
studies (Calder et al., 2003; De Sonneville et al., 2002;
Horning et al., 2012; Williams et al., 2009). The optimal
level of task performance can indeed be reached at a
very late point in development, depending also on the
very nature of the diagnostic information of the facial
expression and its temporal properties and evolution-
ary value.

Efficiency: Decrease

Finally, we observed differences in the steepness of
decrease in recognition performance across emotions
and conditions. In the dynamic condition, the steepest
decreases were observed for anger, happiness, and
sadness and less severe decreases for fear and surprise.
Disgust showed the least severe decrease in this
condition. Different patterns were observed in the
static condition, the steepest decline being for happi-
ness followed by sadness and disgust. Less severe
decreases were found for fear and anger, whereas the
least severe decrease was observed for the expression
of surprise. Similarly to the differences in the steepness
of increase observed between static and dynamic
conditions, differences in the steepness of decrease
were observed between both conditions for the
expression of disgust. The recognition of the static
expression of disgust decreased from 51% to 34%
between the ages of 61 and 70 and 81 and 90, whereas
recognition accuracy of its dynamic version remained
relatively stable (decrease from 55 % to 52%;
Supplementary Figure S1E).

This pattern of results posits that the recognition of
facial expression declines over time, which is consis-
tent with previous models of aging. These models
suggest that age-related structural changes in different
brain regions, particularly in frontal and temporal
volumes as well as changes in neurotransmitters
(Calder et al., 2003; Ruffman et al., 2008) might be
responsible for older adults’ impairment in the
recognition of facial expression. For example, the
amygdala, which plays a crucial role in the processing
of fear and sadness (e.g., Adolphs et al., 2005; Yang et
al., 2002), undergoes severe atrophy with age and
becomes progressively less responsive to negative
stimuli (De Winter et al., 2016; Mather et al., 2004;
Ruffman et al., 2008). In contrast, the insula and basal
ganglia, which underlie the processing of disgust, seem
to be less vulnerable to aging as evidenced by the
preserved ability to recognize this expression in older
adults (Calder et al., 2003; Horning et al., 2012;
Ruffman et al., 2008). Interestingly, our findings
revealed the least severe decrease in recognition
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performance for the dynamic expression of disgust.
However, in contrast to previous studies that showed
no reduction in the recognition of some expressions or
even some improvements with increasing age (e.g.,
Calder et al., 2003), our findings revealed steep-to-
moderate decreases for all the expressions even for
disgust being usually preserved in elderly people
(Calder et al., 2003; Horning et al., 2012; Ruffman et
al., 2008).

Methodological considerations may be responsible
for the differences observed between the current study
and previous ones. Indeed, previous studies investigat-
ed facial expression recognition across groups of ages
(Calder et al., 2003), stages of life (Horning et al.,
2012), or decades (Williams et al., 2009), whereas our
study investigated elderly people’s ability to categorize
emotions by considering age as a continuum. This
methodological approach overcomes the problem of
defining arbitrary age boundaries, which are routinely
used in the literature to relate to critical developmental
ages.

Furthermore, the variability in findings between the
current research and previous neuropsychological and
behavioral studies can be accounted for by the age
ranges tested across the studies. For example, Calder et
al. (2003) observed improved recognition abilities for
disgust in their older adult age group, spanning from
age 58 to 70 (mean age 65). In contrast, in our study, we
tested participants up to the age of 96, giving rise to the
possibility that the decline for disgust appears at a later
point in development. This assumption is in line with a
previous study that showed a decrease in the recogni-
tion of disgust in elderly people aged 80 to 91 (Williams
et al., 2009).

Additionally, the stimuli used across the different
studies might also have impacted expression-recogni-
tion performance. In the current study, we used a
specific database of emotional expressions that are less
prototypical than the Ekman and Friesen (1976)
standard set of facial photographs used in previous
research (Calder et al., 2003; McDowell, Harrison, &
Demaree, 1994; Sullivan & Ruffman, 2004b). More-
over, in contrast to previous reports that used only
static images displaying the apex or the highest state
of an emotional expression (Calder et al., 2003;
Ruffman et al., 2008), we tested facial expression
recognition with static, dynamic, and shuffled stimuli.
Importantly, our stimuli were controlled for the
amount of low-level discriminative information car-
ried over time. In other words, the quantity of low-
level information carried by our static, dynamic, and
shuffled stimuli was identical across conditions and
tasks (Gold et al., 2013). In line with previous studies
(Krendl & Ambady, 2010; Sze et al., 2012), we found
that elderly people were impaired in recognizing static
but not dynamic expressions. However, in contrast to

the findings reported by Krendl and Ambady (2010),
we also observed steep-to-moderate declines for all the
expressions even in the dynamic condition. However,
in their study, participants were provided with
additional aiding cues, such as body-related informa-
tion or contextual cues, which might have facilitated
expression recognition given that the perception of a
particular expression is strongly influenced by the
context in which it occurs (Barrett & Kensinger, 2010;
Horning et al., 2012). For example, Aviezer et al.
(2008) found more consistent recognition performance
for fear when person-related or contextual informa-
tion was provided to the participants.

Finally, the divergence between our findings and
those of previous research may also be due to the small
number of trials presented (Horning et al., 2012;
Moreno et al., 1993) as well as the differences in the
settings used with some studies relying on laboratory
settings (Calder et al., 2003; Horning et al., 2012) and
others on online tasks (Williams et al., 2009).

Static versus dynamic expressions

A dynamic advantage before peak efficiency

Our findings revealed a dynamic face advantage for
the recognition of anger, surprise, and happiness
before peak efficiency. These results are inconsistent
with previous developmental studies, which revealed
that dynamic presentations did not increase children’s
recognition performance (Nelson et al., 2013; Nelson
& Russell, 2011; Widen & Russell, 2015), and with
some experiments showing even an overall advantage
for static expressions (Nelson & Russell, 2011, study
1; Widen & Russell, 2015). Such advantage also
differs from the results reported by previous studies in
young and healthy adults (e.g., Christie & Bruce,
1998; Jiang et al., 2014; Kätsyri & Sams, 2008),
showing that the recognition of facial expressions is
not facilitated by the dynamic information provided
by moving faces.

The lack of consistency between these studies and
the present work may be accounted for by methodo-
logical factors. For instance, in some of the afore-
mentioned developmental studies, only a single actor
was selected to record the facial expressions (Nelson et
al., 2013; Nelson & Russell, 2011), raising the
possibility that the results found could be biased by
the acting performance. Compared to the Ekman and
Friesen (1976) standard set of facial expressions, the
expressions of the single actor used in the study by
Nelson and Russell (2011) were indeed more readily
labeled as correct by adults as they were perceived as
clearer and more intense. Asking children to catego-
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rize facial expressions of a single actor in their
dynamic and static forms might also have impacted
their recognition performance because they might
have been more likely to choose the same label in both
the conditions by using a picture-matching strategy. In
addition, compared to the current research in which
children were asked to choose the correct answer
among six possibilities, previous developmental stud-
ies used free labeling as a measure of recognition
(Nelson & Russell, 2011; Widen & Russell, 2015),
which raises the possibility that vocabulary perfor-
mance rather than children’s true ability to under-
stand the emotions of others were tested.

Importantly, most developmental studies that re-
vealed an overall static advantage for facial expression
recognition (Nelson & Russell, 2011; Widen & Russell,
2015) directly compared children’s performance for
static expressions to their scores with dynamic expres-
sions. In most cases, these direct comparisons can be
problematic because they make it difficult to determine
whether increased recognition rates are caused by
psychological or physical factors (Gold et al., 2013).
For instance, Nelson and Russell (2011) and Widen
and Russell (2015) created their static images by
presenting a single frame of the highest amplitude of
the dynamic sequences, a procedure that might have
created ‘‘optimal’’ static images. The overall static
advantage found in their research may be due to an
increased quantity of discriminative information pro-
vided by the stimuli rather than an enhanced psycho-
logical ability to perceive the static expressions. In
order to control for this general confounding of
physical and psychological factors, we decided to rely
on a database of stimuli created by Gold et al. (2013),
who controlled for the amount of low-level information
carried by their stimuli over time by carefully dissoci-
ating these two factors with the use of a psychophysical
approach. Compared to previous studies (Nelson et al.,
2013; Nelson & Russell, 2011; Widen & Russell, 2015),
our results offer a more reliable view and a better
understanding of the way in which temporal properties
influence facial expression recognition from childhood
onward.

A dynamic advantage after peak efficiency

Our results revealed processing benefits of dynamic
stimuli after peak efficiency for all the expressions with
the exception of sadness and fear. Interestingly, our
data evidenced that these results were driven by a
suboptimal performance for the recognition of static
expressions in elderly people rather than increased
abilities to recognize dynamic expressions (see Supple-
mentary Table S1 for the example of surprise).

In everyday life, facial expressions are dynamic
events that unfold over time in some particular ways,
representing a richer and more valid approach to study
facial expression recognition. Previous fMRI studies
have also suggested that different neural substrates
underlie the processing of dynamic and static expres-
sions (e.g., Johnston et al., 2013; Kessler et al., 2011;
LaBar, Crupain, Voyvodic, & McCarthy, 2003; Paul-
mann et al., 2009; Sato, Kochiyama, Yoshikawa,
Naito, & Matsumura, 2004; Schultz & Pilz, 2009;
Trautmann et al., 2009). Dynamic faces have been
found to selectively elicit higher neural responses in the
posterior superior temporal sulcus, in the anterior
superior temporal sulcus, and in the inferior frontal
gyrus (Bernstein, Erez, Blank, & Yovel, 2017; Fox,
Iaria, & Barton, 2009; Pitcher, Dilks, Saxe, Trianta-
fyllou, & Kanwisher, 2011). A very recent fMRI study
that used multivoxel pattern analysis revealed that
dynamic expressions were associated with increased
activation in both face-selective and motion-selective
areas as well as higher categorization accuracies
compared to static expressions (Liang et al., 2017).
Given that dynamic faces elicit higher neural responses
(Bernstein et al., 2017; Fox et al., 2009; Pitcher et al.,
2011) and cause the activation of a wider network of
regions in the brain (Arsalidou, Morris, & Taylor,
2011; Liang et al., 2017), their decoding may be less
vulnerable to age-related degeneration compared to the
decoding of static images.

In contrast, suboptimal performance for static
stimuli could be explained by age-related structural
changes in brain regions responsible for the processing
of static emotional expressions. For example, De
Winter et al. (2016) recently evidenced that age-induced
atrophy to the amygdala of patients with frontotem-
poral dementia affected emotion processing in distant
face-selective areas. More specifically, their findings
evidenced a positive correlation between gray matter
volume in the left amygdala and emotion-related brain
activity in the fusiform face area, a core region in the
face-processing network involved in the decoding of
static stimuli (Pitcher et al., 2011) and emotional
expressions (Ganel, Valyear, Goshen-Gottstein, &
Goodale, 2005; Xu & Biederman, 2010).

Dynamic faces also include information that cannot
be completely rendered by static images, forcing the
observers to shift their attention to different facial
features. Multiple shifts on different facial areas are
likely to benefit expression recognition given that the
facial signals critical for the recognition of emotional
expressions can be found throughout the face. In
clinical conditions or normal aging populations, when
slower or suboptimal processing takes place, dynamic
stimuli may provide additional cues, attracting and
holding attention as well as enhancing motor simula-
tions (Rymarczyk, Biele, Grabowska, & Majczynski,
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2011; Sato, Fujimura, & Suzuki, 2008; Sato &
Yoshikawa, 2007). The increased attention inherently
elicited by moving faces may compensate for the
apparent age-related deficits found in elderly popula-
tions on expression-recognition tasks with static
images. Dynamic face stimuli may naturally drive the
focus of attention toward the diagnostic information in
a bottom-up fashion (i.e., the mouth for surprise),
whereas static face images require the observers to
move toward those features based on top-down
internal representations.

It is also important to note that the advantage we
observed for dynamic expressions cannot simply be
attributed to an overall larger amount of discriminative
information carried by the dynamic stimuli. As
reported above, the stimuli used in the current
experiment were created by Gold et al. (2013), who
used an ideal observer approach to effectively measure
the amount of information provided by the stimuli.
Gold et al.’s findings reveal that their dynamic stimuli
did not offer more discriminative information to the
observers as compared to their static images. Thus, the
dynamic advantage for anger, disgust, happiness, and
surprise observed in our participants is unlikely to be
the result of physical factors. Rather, this dynamic
advantage most probably comes from an adequate
ability to use the available perceptual and diagnostic
information.

We did not find a dynamic advantage for fear and
sadness before or after peak efficiency. From a
sociobiological perspective, the expression of fear is
critical for human survival (LoBue, 2010), and it has
been shown to potentiate early visual processing of
perceptual events (e.g., Phelps, Ling, & Carrasco, 2006)
and enhance attention (e.g., Carlson & Mujica-Parodi,
2015; Pourtois, de Gelder, Bol, & Crommelinck, 2005).
Interestingly, using a single-trial repetition suppression
approach, we very recently revealed that this expression
boosts the early coding of individual faces regardless of
attentional constraints (Turano et al., 2017). Similar
findings were reported in a very recent developmental
study that examined detection thresholds for happy
and fearful faces presented with noise. The superior
ability for detecting fearful faces was observed already
in infants aged 3.5 months (Bayet et al., 2017). Our
brain may be particularly tuned to recognize this
expression regardless of its temporal properties. This
assumption may explain the absence of a dynamic
advantage for the decoding of this expression. How-
ever, enhanced processing of fear would also predict
increased categorization performance, a prediction that
is inconsistent with our findings. Our results indeed
revealed very low recognition rates throughout the life
span. Interestingly, in a recent study, Sweeny et al.
(2013) evidenced that the detection of a fearful face
dissociates from its categorization. Fearful faces were

very rapidly and accurately detected even when
presented for only 10 ms, whereas their categorization
rates were near chance level. Our brain might,
therefore, be specially tuned to detect this expression
independently from its categorization (see also Smith &
Rossit, 2018). Also, as mentioned above, among all
expressions, fear is probably the most powerful for
transmitting multisensory information. Broader con-
textual information may, therefore, be necessary to
reliably categorize it. This assumption is in line with an
emerging literature that suggests that isolated facial
signals may not be sufficient for observers to ade-
quately perceive the emotions of fear and disgust and
that additional information regarding the context in
which the expression occurs is critical (e.g., Barrett &
Kensinger, 2010).

The absence of a dynamic advantage for the
processing of sadness is consistent with previous
findings, which revealed that the expression of sadness
is better recognized through static pictures (Bould et
al., 2008; Recio et al., 2013; Widen & Russell, 2015) or
when evolving slowly (Kamachi et al., 2001; Recio et
al., 2013). Ekman (2003) suggested that, among all the
expressions, sadness is the one lasting the longest over
time, a property that may explain why slowness or
stillness may increase recognition performance. Our
results further confirm that the idiosyncratic properties
of this expression are inherently slow.

We should acknowledge that we did not assess
whether elderly people’s cognitive abilities influenced
recognition performance. Fluid intelligence (e.g.,
Horning et al., 2012; Sullivan & Ruffman, 2004a),
processing speed (e.g., Orgeta & Phillips, 2007), verbal
memory (e.g., MacPherson et al., 2002), or discrimi-
nation of visual information (Mill, Allik, Realo, &
Valk, 2009) are all cognitive faculties that are critical
for the recognition of human facial expressions and
have been found to decrease with increasing age (e.g.,
Mill et al., 2009; Salthouse, 2004). Because our stimuli
were only presented for 1 s, reduced processing speed in
elderly people may have influenced their recognition
performance for static face images as the number of
facial features extracted from the faces in this limited
presentation time might have been lower than that in
younger adults. Interestingly, a recent cross-sectional
study that examined the influence of different cognitive
abilities on facial-expression recognition observed that
these faculties contributed to the performance but did
not fully account for the impairments observed in older
adults (Horning et al., 2012). Additionally, in a later
study, Zhao et al. (2016) observed that the slower
processing speed in elderly people was not responsible
for facial expression–recognition deficits (but see
Suzuki & Akiyama, 2013; West et al., 2012).

It is also worth noting that differences in recognition
abilities could stem from differences in the cohorts that
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were tested, such as educational shifts, cultural norms,
or social differences. To the best of our knowledge, no
prior research has ever examined the extent to which
the recognition of facial expression is influenced by
these cohort effects (Ruffman et al., 2008).

The shuffled condition

We introduced this condition to fully replicate the
study conducted by Gold et al. (2013) without having
clear predictions for this experimental condition. This
condition was originally designed to assess whether
human observers were sensitive to the temporal
development of an expression over time (i.e., order of
frames). Our results revealed similar developmental
trajectories for the six basic expressions in the shuffled
condition (i.e., increase, peak efficiency, and decrease)
although recognition rates were generally lower than
those observed in the other conditions. More specif-
ically, our findings revealed a recognition advantage for
the dynamic expressions of anger, disgust, happiness,
and surprise over the shuffled ones and a recognition
advantage for the static expressions of happiness,
disgust, and surprise over the shuffled ones. In contrast,
we observed better recognition performance for the
expression of fear in the shuffled compared to the static
or dynamic conditions. As reported by our partici-
pants, this advantage for fear could be accounted for by
the properties of the stimuli themselves. The shuffled
expressions were generated by temporally randomizing
the frames of the dynamic movies. This procedure leads
to the impression that the actors performing the
emotional expressions are shaking giving the feeling
that they are afraid.

Interestingly, differences in recognition performance
across conditions are inconsistent with the results
reported by Gold et al. (2013), who observed similar
performance in all three conditions. In that prior study,
however, the authors did not consider the recognition
rates of the individual expressions effectively, collapsing
them across the six expressions in each condition. Our
findings offer, therefore, new evidence that the temporal
progression of information (i.e., the order of the frames)
provided by genuine natural expressions is more
important for the recognition of some expressions (e.g.,
anger, disgust, happiness, surprise) than others (e.g., fear,
sadness). Given the very nonecological nature of the
stimuli, we do not further discuss these results as their
contribution is limited from a theoretical point of view.

Methodological considerations

In the current study, we used a hierarchical Bayesian
model with weakly informative priors. The flexibility

and power of the Bayesian approach in dealing with
time-series data and building nonlinear models was also
recently demonstrated in emotion research (e.g., see
Krone, Albers, Kuppens, & Timmerman, 2017, for an
application in personal emotion dynamics) thanks to
the rapid development in probabilistic language pro-
graming. It is worth noting that there are alternative
candidate models that could capture the nonlinear
relationship between age and some psychological or
behavioral measurements, including latent growth
curve models (for an introductory text, see Duncan,
Duncan, & Strycker, 2013); generalized additive mixed
models, including spline regression; and quadratic
linear mixed-effect models (S. N. Wood, 2006). Some of
these models have been previously applied to investi-
gate similar questions, such as the estimation of the
peak efficiency of diverse recognition abilities (i.e.,
change-point estimation, e.g., Cohen, 2012; Cudeck &
Klebe, 2002). The Bayesian modeling framework we
used here provides a coherent mathematical language
to describe our model and assumption while giving the
flexibility to potentially extend part of the component
to build more complex models. Moreover, it allowed us
to properly quantify the uncertainty and regulate the
estimation across different conditions using hyper-
priors.

To identify inverse U-shape patterns, such as those
observed in our study, previous modeling methods
occasionally involved the testing of a quadratic
relationship (e.g., a significant regression coefficient of
age2) even if such practice is not always valid
(Simonsohn, 2017). Instead, Simonsohn (2017) sug-
gested fitting two separate linear models and com-
paring the coefficients of the two slopes as a more
valid alternative. Although our model is conceptually
similar to Simonsohn’s model, there are two major
differences. First, the inference proposed by Simon-
sohn involved multiple model-fitting steps by initially
identifying the break point (i.e., peak efficiency in our
case) and then estimating the coefficients of the two
linear functions. In contrast, with a full model that
jointly estimates the break point and the linear
functions, we could better estimate the parameters and
quantify the associated uncertainty. Second, the
intercepts of our step-linear function are linked and
represented as one value (i.e., the recognition ability at
peak efficiency), whereas in Simonsohn’s model the
two linear functions are not linked. The linked linear
function is more appropriate in our case as it is
unlikely to have a sudden increase or decrease in
recognition ability in a short span during natural
development. Nonetheless, an implicit yet important
assumption present in both models is that the peak
efficiency is found somewhere in the middle of the life
span (or, more precisely, not at either of the two
extrema). Indeed, if the peak efficiency is at the lower
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or upper limit (e.g., too young or too old), the
parameter estimation may not be accurate.

Our model estimation performed well except for the
expression of happiness because of the ceiling effect we
observed for this expression. The divergence in the
trace and the multimodal in the posterior distribution
of the peak efficiency both indicate that the current
step-linear model is not the best suited to represent
changes in recognition abilities across the life span for
this expression. Currently, all the expressions are
estimated independently. Although modeling this way
is easier to interpret, we ignored the random effect in
the subjects across the expressions. Future studies are
necessary to take into account the random effect from
each subject (intercept and slope). This could be done
by directly modeling the full confusion matrix from
each subject (instead of only looking at the diagonal in
the current study), presumably with some matrix
decomposition trick or a dirichlet-categorical model.

Finally, our model allowed us to estimate the overall
advantage of one condition over another before and
after the peak efficiency. However, because we decided
to consider the age as a continuum and not rely on
specific age groups on the basis of arbitrary boundaries,
our model did not allow us to finely estimate at which
precise age the dynamic advantage emerges or disap-
pears.

Conclusions

Current knowledge about facial expression recog-
nition primarily arises from studies that use static
images. In our daily life, however, natural faces are
dynamic; they evolve over time in some particular
ways to convey crucial information for adapted social
behaviors. Prior studies investigating the importance
of dynamic cues for the processing of facial expres-
sions have yielded equivocal results with some studies
suggesting that dynamic expressions are more readily
recognizable than static images and others suggesting
that they are not. In order to clarify these results and
to determine if age is a critical factor to account for
such discrepancies, we conducted a large cross-
sectional study to investigate the recognition of facial
expressions by participants aged 5 to 96. More than
400 observers were instructed to categorize static,
dynamic, and shuffled expressions according to the six
basic expressions. Our findings revealed that, regard-
less of the age of the observer or temporal condition,
happiness was the best recognized facial expression,
whereas fear was the most difficult to effectively
categorize as this expression was commonly confused
with surprise. Bayesian modeling allowed us to
quantify the steepness of increase and decrease in

performance for each individual expression in each
condition. Our results also reveal a data-driven
estimation of the peak efficiency for every expression
and, finally, provide new evidence for a dynamic
advantage for facial expression recognition, stronger
for some expressions than others and more important
around specific points in the life course. Notably,
performance for static images was less effective in the
elderly population. Altogether, our findings highlight
the importance of using ecologically valid faces in
exploring the recognition of facial expressions and
invite caution while drawing conclusions from studies
that use only static images to this aim.

Keywords: facial expressions of emotion, life span,
static, dynamic, aging
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Claudia Wyler, Qendresa Shkodra, Vanessa Ferrari,
Pauline Rotztetter, Pauline Schaller, Linda Pigozzi,
Lauriane Beffa, Hugo Najberg, Christel Aichele, and
Martina Studer for their precious help with testing.
This study was supported by grant F14/06 from the
Rectors’ Conference of Swiss Universities (CRUS)
awarded to ARR and by a grant from the Swiss
National Science Foundation (n8100014_156490/1)
awarded to RC. The publication fees were covered by
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