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A B S T R A C T

Manual and saccadic reaction times (SRTs) have been used to determine the minimum time required for different
types of visual categorizations. Such studies have demonstrated extremely rapid detection of faces within natural
scenes, whereas increasingly complex decisions (i.e. levels of processing) require longer processing times. We
reasoned that visual categorization speed is not only dependent on the processing level, but is further affected by
decisional space constraints. In the context of two different tasks, observers performed choice saccades towards
female (gender categorization) or personally familiar (familiarity categorization) faces. Additionally, familiarity
categorizations were completed with stimulus sets that differed in the number of individuals presented (3 vs. 7
identities) to investigate the effect of decisional space constraints. We observe an inverse relationship between
visual categorization proficiency and decisional space. Observers were most accurate for categorization of
gender, which could be achieved in as little as 140ms. Categorization of highly predictable targets was more
error-prone and required an additional ∼100ms processing time. Our findings add to an increasing body of
evidence demonstraing that pre-activation of identity-information can modulate early visual processing in a top-
down manner. They also emphasize the importance of considering procedural aspects, as well as terminology
when aiming to characterize cognitive processes.

1. Introduction

Across sensory modalities, stimulus categorization can involve a
number of different processes. Different types of stimuli can be de-
tected, discriminated, recognized as having been encountered before, or
identified on the exemplar level. The human visual system can perform
such categorizations with high proficiency despite large variations in
stimulus input. For instance, categorization of animals presented in
images of natural scenes presented for as little as 20ms can be reliably
achieved in under 300ms (ms) (e.g., Macé, Thorpe, & Fabre-Thorpe,
2005; Rousselet, Fabre-Thorpe, & Thorpe, 2002; Thorpe, Fize, & Marlot,
1996). The speed of such categorical responses can be exploited to
study the characteristics of visual processing. Specifically, the time re-
quired to perform accurate visual categorizations provides a valuable
source of information, which can be levered to constrain theories of
visual processing (for a review see e.g., Fabre-Thorpe, 2011). However,
a number of other aspects can influence visual categorization speed.

One important aspect that affects visual categorization speed is the
effector from which responses are recorded, with certain responses re-
quiring more time to be executed than others. Estimates of visual

categorizations have been derived from verification and naming tasks,
which typically involve longer reaction times (RTs) (Tanaka & Taylor,
1991), as compared to manual forced choice paradigms, where subjects
press (or release) one of two buttons (a button) to distinguish between
stimulus categories (e.g., Hasbroucq, Mouret, Seal, & Akamatsu, 1995).
To reduce response times, more sensitive Go/no-go paradigms have
been developed that require subjects to respond to predefined target
categories via finger-lift from an infra-red sensor (e.g., Bacon-Macé,
Macé, Fabre-Thorpe, & Thorpe, 2005; Rousselet et al., 2002; Thorpe
et al., 1996; VanRullen & Thorpe, 2001). Finally, other paradigms ex-
ploiting the very rapid responses of oculo-motor effectors have been
developed. The saccadic reaction times (SRTs) measured in such para-
digms provide a more precise description of the lower bound of speeded
categorizations (Crouzet, Joubert, Thorpe, & Fabre-Thorpe, 2009;
Crouzet, Kirchner, & Thorpe, 2010; Kirchner & Thorpe, 2006). To-
gether, these developments have served the goal of maximizing the
precision estimates of visual processing speed (for a direct comparison
of paradigms, see Bacon-Macé, Kirchner, Fabre-Thorpe, & Thorpe,
2007). Moreover, aside from deriving mean or median RTs, these
paradigms have aimed to determine the minimum reaction time
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(minRT). The minRT is defined as the first time-bin for which correct
responses significantly outnumber incorrect ones (Fabre-Thorpe,
Richard, & Thorpe, 1998; VanRullen & Thorpe, 2001), and is con-
sidered to reflect the minimal processing time required for reliable re-
sponses (Rousselet, Macé, & Fabre-Thorpe, 2003).

A second aspect that affects visual categorization speed is the nature
of the stimulus processed. In the field of visual cognition, numerous
studies have investigated the role of stimulus category on categoriza-
tion proficiency. Such studies have e.g. demonstrated that human faces
can be rapidly detected within natural scenes within as little as
100–110ms (Crouzet et al., 2010), and are more efficiently processed
compared to other non-face objects (e.g., Caudek, 2013; for a review
see Yovel, 2016). These findings have supported the notion that faces
represent a “special” stimulus category, studied by a large and con-
tinuously growing body of research, which can generate insights into
general functioning principles of the human brain.

A third aspect that affects visual processing speed is the process
engaged in, or processing level (cf. Mack & Palmeri, 2015). Faces are
ideal stimuli to study visual categorization, because they can be pro-
cessed at multiple levels. For example, typical observers can accurately
and rapidly detect the presence of a face, determine its gender, age, and
ethnicity, discriminate between and recognize previously encountered
persons, and finally identify unique individuals and recall associated
semantic information. Psychophysical studies have demonstrated that
different visual categorization processes are associated with important
differences in information diagnosticity. For instance, the ability to
detect a face, determine its gender, expression, or familiarity, relies on
different facial information (Schyns, 1998; Gosselin & Schyns, 2001;
Schyns, Bonnar & Gosselin, 2002; Smith, Fries, Gosselin, Goebel &
Schyns, 2009; Smith, Volna & Ewing, 2016). Importantly, these dif-
ferent categorization processes are associated with varied levels of be-
havioral proficiency. For example, superordinate human vs. animal
decisions can be performed manually with high precision (98%) in as
little as 285ms, while famous vs. unfamiliar manual decisions are more
error-prone and slower (75%, 468ms); gender categorization, on the
other hand, can be performed with high fidelity and intermediate
minRTs (94%; ∼310ms) (Barragan-Jason, Lachat, & Barbeau, 2012).
Adding to these findings, we recently reported processing level de-
pendent categorization proficiency for both healthy observers and a
case of acquired prosopagnosia (Ramon, Sokhn, Lao & Caldara, 2018).

Despite such evidence, the majority of studies of visual categoriza-
tion do not systematically address or consider the impact of different
processing levels. Additionally, and perhaps consequently, many stu-
dies lack terminological precision. For instance, some researchers use
the term “face identification” for any task that deals with processing of
facial identity, e.g. face matching (e.g., Balsdon, Summersby, Kemo &
White, 2018, who also use the term “face recognition” inter-
changeably). Similarly, while “face recognition” refers to the ability to
identify stimuli as previously learned (e.g., Duchaine & Nakayama,
2006; Blais, Jack, Scheepers, Fiset & Caldara, 2008; Barton & Corrow,
2016; Ramon & Gobbini, 2018), others misleadingly use this term in the
context of face matching tasks (e.g., Phillips, Yates, Hu, Hahn, Noyes,
et al., 2018). Both indiscriminate terminology, as well as lack of con-
sideration of process(es) implied can generate seemingly contradictory
findings, which can be detrimental to advancing our understanding of
visual categorization (Ramon, 2018; Ramon, Bobak & White, in press).

However, type of effector, stimulus category, and processing level
are not the only factors that flexibly modulate visual categorization on
the neural and behavioral level (cf. Mack & Palmeri, 2015; Praβ,
Grimsen König & Fahle, 2013; Kim & McCarthy, 2016; Rotshtein,
Schfield, Funes & Humphreys, 2010; Bonte, Hausfeld, Scharke, Valente
& Formisano, 2014). Additionally, observers’ experience, environ-
mental regularities, and expectations determine processing proficiency
(e.g., Palmeri & Mack, 2015; Hall, Mattingley & Dux, 2018; Manahova,
Mostert, Schoffelen & de Lange, 2018; Eger, Henson, Driver & Dolan,
2007; Sauvé, Harmand, Vanni & Brodeur, 2017; Kadel, Feldmann-

Wüstefeld & Schubö, 2017; for reviews see Summerfield & Egner, 2009;
Lupyan, 2015; O'Callaghan, Kveraga, Shine, Adams & Bar, 2017; Seriès
& Seitz, 2013). A simple way to demonstrate this is by varying the size
of the stimulus set used, which (together with other procedural choices)
determines an item’s probability of being encountered.

A large body of work has demonstrated the important effect that
stimulus set size can have on neural processing and overt behavior.
Several studies support the idea that higher (neural and behavioral)
search efficiency is found for smaller categories (cf. Wu, McGee,
Echiverri & Zinszer, 2018). Psychophysical studies involving target
search for simple stimuli in multi-item displays have demonstrated that
visual search proficiency declines as the number of simultaneously
available distractors increases (e.g., Palmer, 1994; Busey & Palmer,
2008). Such decreases in performance accuracy and RT increases ob-
served with increasing set sizes, referred to as set size effects, are found
across sensory modalities, as well as for individually presented stimuli
of varied complexity (e.g., Pollack, 1952; Kent & Lamberts, 2005;
Lacouture & Marley, 2004). Concerning high-level vision, as in-
vestigated by face processing, set size (or attentional load; cf. Olk &
Garay-Vado, 2011) has been reported to affect visual categorization.
For example, interactions between invariant features (e.g., emotional
expression, gender, race) varies as a function of set size (Lipp,
Karnadewi, Craig & Cronin, 2015; Craig, Mallan & Lipp, 2012). Cru-
cially, set size has been reported to account for “apparent inconsistency
in the literature on face categorization” (Lipp et al., 2015; p.1293).

As such, two experiments can involve the same stimulus category
(e.g., faces) and task (e.g., pressing a button when an exemplar of a
target category is presented). Independent of these similarities, both
can involve distinct processes (e.g., detecting the occurrence of a female
face, or that of a familiar individual), for which potentially different
sources of information are diagnostic, which are in turn associated with
different levels of categorization proficiency. Performance will also be
determined by two additional factors: the probability of seeing an ex-
emplar from a target category (i.e., the proportion of female to male,
and unfamiliar to familiar faces); the total number of exemplars per
category, i.e. stimulus set size. Specifically, if individual level proces-
sing is required (e.g., in familiarity decisions and identification tasks),
small set sizes should be associated with more proficient performance.
Simply speaking, it is easier to determine whether an exemplar is one of
few, as opposed to one of many.

Therefore, studying visual categorization requires careful con-
sideration of a number of aspects: effector type, stimulus category
(accurate definition and terminology related to), processing level, and
stimulus predictability, which is partly determined by the stimulus set
size. Neglecting any of these aspects can promote erroneous conclusions
and apparently discrepant findings. To illustrate, consider recent find-
ings of process-dependent face categorization. Numerous findings sug-
gest that face detection precedes familiarity recognition. For example,
Besson et al. (2017) assessed face categorization at three different levels
through manual minRTs using extremely large stimulus set to avoid
image repetitions. The authors reported highly accurate performance
and very rapid minRTs for “human face categorization” (i.e., face de-
tection ∼240ms) and “individual face recognition” (i.e., searching for
a single predefined target identity;∼260ms), but more error prone and
slower responses for “familiar face recognition” (i.e, deciding whether a
face belonged to a large pool of famous individuals; ∼380ms), as also
reported for personally familiar face recognition (Ramon, Caharel, &
Rossion, 2011). Thus, 380ms represents the lower bound for speeded
manual familiarity decisions that occur ca. 180ms after the earliest
neural marker of familiarity (e.g., Barragan-Jason, Cauchoix, &
Barbeau, 2015; Caharel, Ramon, & Rossion, 2014; Huang et al., 2017).
Seemingly contradictory evidence was reported by Visconti di Oleggio
Castello and Gobbini (2015). Measuring the minimum speed of choice
saccades expressed towards personally familiar (PF) faces, the authors
concluded that personally familiar face “detection” could be achieved
in 180ms, before “explicit recognition of identity” (p.1). These findings
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are incompatible with electrophysiological studies, which have re-
ported the earliest familiarity-dependent differential response to faces
(∼140–200ms; e.g. Barragan-Jason et al., 2015; Caharel et al., 2014;
Huang et al., 2017).

In our opinion, the most parsimonious account for these apparently
discrepant findings lies in procedural differences and misleading ter-
minology (cf. Ramon, 2018; Ramon et al., 2018). Visconti di Oleggio
Castello and Gobbini’s (2015) observers performed choice saccades
towards a set of familiar faces comprising merely three target identities
(which differed across observers). Thus, given this highly constrained
decisional space, the process that Visconti di Oleggio Castello and
Gobbini (2015) measured is much less “detection” (i.e. spotting one of
numerous possible instances of a category). Rather, it represents a
three-alternative “individual face recognition” (Besson et al., 2017)
task, which can be achieved in<140ms for a single target identity
(Mathey et al., 2012). Despite repeating each image several hundreds of
times, Visconti di Oleggio Castello and Gobbini’s (2015) observers’
performance in the three-alternative target search task was inferior to
that reported by Mathey et al. (2012) in their single target task (per-
formance ranges: 49–69% vs. 60–75%).

Here, we sought to systematically investigate the extent to which
visual categorization speed is affected by two factors: processing level
and decisional space. To this end, we employed a time-sensitive SRT
paradigm, in the context of two different processes performed on a
single stimulus category (i.e., faces): gender and familiarity decisions
expressed through two alternative forced-choice saccades (cf. Ramon
et al., 2018). Additionally, in the context of familiarity decisions, we
manipulated the decisional space by varying the number of target ex-
emplars, thereby creating a 1-of-n-target search task. This effectively
manipulates observers’ expectation given the varied probability of ex-
emplar presentation: both familiarity decision tasks differed in that
their decisional space was either comparatively broad or narrow.

To anticipate our findings, in line with previous work (Ramon et al.,
2018; Mathey et al., 2012 ) rapid minSRTs are observed under condi-
tions of high predictability, where the search space is confined to a
binary, unambiguous category (gender decision task), or a very small
number of target items (familiarity decision with few identities). These
findings indicate that “detection of personal familiarity” requires sig-
nificantly more time than previously reported, unless the term “detec-
tion” is used loosely to describe responses executed towards an ex-
tremely restricted number of target identities (Visconti di Oleggio
Castello & Gobbini, 2015) – a process that should more accurately be
labeled as n-alternative target search (Besson et al., 2017).

2. Methods

2.1. Participants

We tested three groups of subjects: the first (nlab_members = 8; 4 fe-
males, mean age: 31, range: 24–37 comprised group members from the
iBMLab. Group members were highly familiar with the target identities,

who were their colleagues for several years; this first group completed
all three tasks described below. The second and third groups
(nstudents_gender= 36; 31 females, mean age: 21, range: 20–24;
nstudents_familiarity = 27; 24 females, mean age: 22, range: 20–24) com-
prised students from the Department of Psychology who knew the
members of Department depicted in the stimulus material through their
teaching and mentoring activities. The second group of observers
completed the gender categorization task; the third group completed
both personal familiarity categorization tasks. Note that observers of
the second and third groups completed only one paradigm (gender or
familiarity decisions), due to internal departmental regulations re-
garding the number of experimental hours completed by student par-
ticipants. Groups’ performance (i.e., lab members vs. students) was
considered separately in the analyses due to the inherent differences in
age and exposure to individuals whose likenesses were presented in the
experiments. All participants provided written informed consent; all
procedures were approved by the internal ethics committee of the
Department of Psychology at the University of Fribourg, Switzerland
and are in accordance with the Code of Ethics of the World Medical
Association (Declaration of Helsinki).

2.2. Stimuli

The full stimulus set comprised natural (uncropped, color) images of
14 facial identities (7 un/familiar) taken from three different view-
points (frontal, left, right). For each PF identity, images of a corre-
sponding unfamiliar identity carefully matched for age, gender, and
appearance (hair color and style, eye color) were taken (see Fig. 1 for
stimulus examples). Image processing included placement on a uniform
grey background (630×630 pixels) and correction for low-level
properties (luminance, contrast) using the SHINE toolbox (Willenbockel
et al., 2010), as well as additional ones kindly provided by V. Will-
enbockel to allow for equation of color stimuli.

2.3. Procedures

Prior to completing the experiments, subjects completed familiarity
ratings to determine their level of familiarity with each identity (PF and
unfamiliar) presented. Each item of the familiarity questionnaire con-
sisted of an image of each stimulus identity taken under varied, natural
conditions. Lab members’ images were taken from professional web-
sites, unfamiliar identities’ images were taken from social media.
Observers had to indicate their self-reported degree of familiarity with
each individual on a scale from 1 (not at all familiar) to 5 (highly fa-
miliar). For all experiments, stimuli were presented on a 1920× 1080
pixel VIEWPixx monitor. Subjects’ oculo-motor behavior was recorded
at a sampling rate of 1000 Hz with an SR Research Desktop-Mount
EyeLink 2 K eye tracker (with a chin and forehead rest; average gaze
position error ∼0.5, spatial resolution: ∼0.01). The eye-tracker had a
linear output over the range of the monitor used. Although viewing was
binocular, only the left eye was tracked; given the fully balanced

Fig. 1. Examples of photographs of personally familiar and unfamiliar stimuli taken for stimulus creation.
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stimulus presentation across visual fields, inter-individual differences in
ocular dominance were considered irrelevant. The experiment was
implemented in Matlab (R2009b, The MathWorks, Natick, MA), using
the Psychophysics toolbox (PTB-3) (Kleiner, Brainard, & Pelli, 2007;
Pelli, 1997) and EyeLink Toolbox extensions (Cornelissen, Peters, &
Palmer, 2002; Kleiner et al., 2007). Calibrations of eye fixations were
conducted at the beginning of the experiment using a nine-point fixa-
tion procedure as implemented in the EyeLink API (see EyeLink
Manual) and using Matlab software. Afterwards, calibrations were va-
lidated with the EyeLink software, and repeated when necessary until
reaching an optimal calibration criterion. Drift correction was per-
formed on each trial via central cross fixation.

In the gender categorization task, subjects were instructed to perform
choice saccades towards female faces. In this task three images (view-
point changes) for each PF individual (6 identities, 3 females) and their
unfamiliar counterparts were presented. A trial began with a central
fixation cross displayed between 800 and 1600ms, followed by a
200ms blank and subsequent presentation of the target/distractor pair
presented for 600ms. After a saccade was registered, the next trial was
presented after a 1000ms blank inter-trial interval. Stimuli subtended
14˚x14° (average face height was 11°), and stimulus eccentricity was
8.6˚ of visual angle. With all possible combinations and equal number of
presentations per identity and visual field, the total number of trials was
216; subjects took self-paced breaks after each block of 54 trials.

The two familiarity categorization tasks differed in terms of the
number of identities depicted, but both required observers to perform
choice saccades towards personally familiar identities presented with
unfamiliar distractors. The low and high predictability variants in-
volved presentation of 7 PF (3 females), or 3 PF (all male) identities,
respectively, as well as an equal number of well-matched UF dis-
tractors. Note that, before beginning the respective experiments, par-
ticipants were not aware of the number of identities actually presented.
Presentation parameters were identical to those described for the
gender categorization task (see above). The procedural parameters
paralleled those used by Visconti di Oleggio Castello and Gobbini
(2015), with exception of stimulus presentation duration (600ms in-
stead of 400ms), as initial pilot testing revealed slightly longer pre-
sentation durations were necessary for acceptable performance levels.
On each trial, a PF identity was paired with a same-gender, same-or-
ientation distractor, and appeared with equal probability in either vi-
sual field. The total number of trials for the low predictability famil-
iarity categorization task amounted to 150. To achieve a comparable
number of trials in the high predictability variant for comparison with
the low predictability variant, each unique stimulus× visual field
combination was presented three times, leading to a total 162 trials
over three blocks. These trials/blocks were doubled to further de-
termine potential effects of repetition in the high predictability cate-
gorization task (see Analyses, Section 3). Subjects took self-paced
breaks after each block of 50 or 54 trials (low or high predictability
variant), respectively. Note that the order of the high and low pre-
dictability familiarity decision tasks was not randomized. Participants
completed the low predictability version and the gender decision tasks
(order counterbalanced) on the same day; two months later the high
predictability variant was completed.

3. Analyses

3.1. Pre-processing

We applied the adaptive velocity based algorithm developed by
Nyström and Holmqvist (2010) to find the onset of the first saccade (if
any) within each trial. We discarded trials in which the onset of the first
saccade was lower than 80ms (Visconti di Oleggio Castello and
Gobbini, 2015), as these were considered anticipatory saccades.

3.2. Statistical analyses

As mentioned above, across all experiments we considered only data
from subjects whose performance exceeded chance level. For the
gender categorization task this led to the exclusion of one departmental
member (nlab_members = 7/8); all student participants performed above
chance and were considered (nstudents_gender = 36/36). For the famil-
iarity categorization tasks, only data from subjects who performed re-
liably across both low and high predictability variants were considered
(nlab_members = 4/8, nstudents_familiarity = 14/27). Analyses performed to
determine the effect of stimulus repetition were conducted on data from
subjects who performed above chance across all blocks of the high
predictability familiarity categorization task (nlab_members = 7/8,
nstudents_familiarity = 20/27). Analyses of accuracy and mean SRTs were
performed in R (version 3.2.4; R Core Team, 2013) using the lme4
package (Bates, Maechler, Bolker, & Walker, 2014) and the lmerTest
(Kuznetsova, Brockhoff, & Christensen, 2015) to obtain p-values of the
fixed predictors of the fitted models. Note that given our research
question we were not interested in between-group differences, but ra-
ther those related to stimulus predictability, i.e. those observed within
groups.

3.2.1. Gender categorization
Accuracy, mean and minSRTs are reported descriptively for the

gender categorization task for all participants (nlab_members,

nstudents_gender), as this task served only as a baseline to demonstrate
subjects’ ability to perform the SRT task.

3.2.2. Personal familiarity categorization: low vs. High stimulus
predictability

Accuracy. To investigate the effect of stimulus predictability on
subjects’ accuracy, we performed generalized linear mixed models with
a binomial family (Jaeger, 2008) for the data obtained in the experi-
ments characterized by lower (7 identities), or higher stimulus pre-
dictability (3 identities), respectively. This was done separately per
group tested given the unequal sample sizes available. In this model,
the main predictor is the variable ‘predictability’ (low and high for larger
and smaller number of identities presented) and the variable partici-
pant is a random factor. We performed the Log-likelihood Ratio Test to
compare the null and full model and assess the significance of the
predictor.

Mean SRTs. To investigate the effect of stimulus predictability on
SRTs, we performed a linear mixed model for the data obtained in the
experiments characterized by lower (7 identities), or higher stimulus
predictability (3 identities), respectively, considering only the correct
trials. Note that, due to the different number of trials across these ex-
periments, we considered all trials from the low predictability (1 5 0),
and those of first 3 blocks for the high predictability (1 6 2) familiarity
categorization tasks. In this model, the main predictor is the variable
‘predictability’ and the variable participant is a random factor. As for
accuracy scores, we performed the Log-likelihood Ratio Test to compare
the null and full model and assess the significance of the predictor.

Minimum SRTs. We estimated minSRTs in two different ways, here
(as for mean SRTs) also only considering the first three blocks of trials.
In order to facilitate comparison across studies, we opted for the same
procedures as reported by Besson et al. (2017) and Visconti di Oleggio
Castello and Gobbini (2015). First, across subjects’ trials (i.e., group
minSRTs) we performed a chi-square test using 10ms time bins across
trials. We considered the first bin where the number of correct trials
outperforms statistically the number of incorrect trials (p < .05), fol-
lowed by at least three significant consecutive bins (Besson et al.,
2017). Second, we determined individuals’ minSRTs. To this end, we (i)
considered only RTs of participants who performed above chance level,
and (ii) opted for 40ms time bins using the Fisher’s exact test
(p < .05). Using this procedure, some participants’ individual minSRT
could not be computed (due to proximal in/correct trial distributions).
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Finally, we assessed the effect of stimulus set size for individual subjects
of n3 using the Wilcoxon signed-rank test (p < .05). Note that the
comparison of minSRTs as a function of stimulus set size was not con-
ducted for n1 due to the insufficient statistical power, as only four
participants’ data were considered.

3.2.3. Effect of stimulus repetition under conditions of high stimulus
predictability

To determine the effect of stimulus repetition, we used the above
described procedure for all behavioral measures, however, taking into
account all correct trials (from all 6 blocks of the high predictability
familiarity categorization experiment; cf. above). We compared RT
associated with the first presentation of a stimulus with each sub-
sequent presentation.

4. Results

Table 1 summarizes the results obtained for all subjects for gender
categorization (nlab_members, nstudents_gender), and personally familiar face
recognition (nlab_members, nstudents_familiarity) under low and high pre-
dictability conditions, respectively. Fig. 2 shows individuals’ minSRTs
plotted against accuracy scores across all experiments. For Individual
subjects’ data see Supplemental Tables.

4.1. Gender categorization

Both departmental members and student participants could reliably
perform the gender categorization task, achieving 81% and 84% on
average, and exhibiting minimum SRTs of 200ms and 140ms, respec-
tively (see Fig. 3).

4.2. Personal familiarity categorization: lower vs. Higher stimulus
predictability

Accuracy. The groups’ SRT distributions for the low and high pre-
dictability familiarity categorization tasks are illustrated in Fig. 4. For
departmental members’ accuracy scores, the fitted model (considering
the total of 1248 trials) revealed a significant main effect of stimulus set
size (i.e., number of identities depicted; X2(1)= 13.73, p= .0002);
performance given 7 target identities was significantly lower than when
3 target identities were presented (74% vs. 82%; z= 3.69, p= .0002).
For students’ accuracy scores, the results from the fitted model (based
on a total of 4361 trials) also showed a significant main effect of sti-
mulus set size X2(1)= 33.53, p < .0001); again, performance for the
lower as compared to higher predictability task variant was sig-
nificantly lower (68% vs. 76%; z= 5.78, p < .0001). For parameter
estimates of the fixed effects for the generalized linear mixed model
with the binomial family for each group tested see Table S2.

Mean SRTs. For departmental members’ SRTs the fitted model
(considering the total of 967 trials) revealed a significant main effect of
stimulus set size (X2 (1)= 29.70, p < .0001). Mean (373 vs 345;
t=−5.49, p < .0001). For students’ SRTs the results from the fitted
model (based on a total of 3142 trials) showed a significant main effect
of stimulus set size (X2(1)= 14.67, p= .0001). Contrary to the de-
partmental members, the mean of RTs in Experiment 1 was significantly
faster than in Experiment 2 (334 vs 345; t= 3.83, p= .0001). For
parameter estimates of the fixed effects for the Linear Mixed Model for
each group tested see Table S3.

MinSRTs. The Wilcoxon signed-rank test revealed no main effect of
stimulus set size on the individual minSRTS (see Table S4) for student
participants in nstudents_familiarity (p= .11).

4.3. Effect of stimulus repetition under conditions of high stimulus
predictability

Accuracy. The fitted model (considering the total of 1944 trials)
revealed no significant effect of repetition on subjects accuracy scores
for n1 (X2(5)= 2.14, p= .83). However a significant main effect of
repetition was shown for n2 (X2(5)= 16.22, p < .05; based on 6480
trials in total). Performance in the first image presentation (73%) was
significantly lower than for the fourth image presentation (z= 2.61,
p < .05) and the fifth image presentation (z= 3.38, p < .001) with a
performance of 78% and 79%, respectively (see Table 2). For parameter
estimates of the fixed effects for the generalized linear mixed model
with the binomial family for each group tested see Table S5.

Mean SRTs. The fitted model revealed a significant effect of repeti-
tion on mean RTs for n1 (X2(5)= 32.18, p < .0001) and n2
(X2(5)= 126, p < .0001) (based on a total 1411 and 4834 trials, re-
spectively). Both groups were slower in the first image presentation
compared to the five other image presentations (see Table 2). For

Table 1
Accuracy (in %) and minimum saccadic reaction times (in ms) obtained across
experiments for all subjects tested, whose performance was above chance level.

Gender categorization

Department members
(nlab_members=7)1

Students (nstudents_gender=36)

Accuracy 81 [71, 90] 84 [81, 86]
minSRT 200ms 140ms
Mean SRT 276 252
Median SRT 262 236
CI [272, 281] [251, 254]

Personal familiarity categorization

Department members
(nlab_members=4)

Students
(nstudents_familiarity=14)

Low predictability
Accuracy 74 [64, 81] 68 [64, 72]
minSRT 360 260
Mean SRT 373 334
Median SRT 390 334
CI [370, 388] [331, 340]
High predictability
Accuracy 82 [74, 89] 76 [71, 79]
minSRT 260 240
Mean SRT 345 345
Median SRT 353 339
CI [343, 357] [343, 350]

95% confidence intervals are provided in brackets. Individual observers’ data
are reported in Table S1 and Table S4.

1 Considering only the four obsservers reported for personal familiarity ca-
tegorizations yielded the following performance: Accuracy: 91% [84 94];
MinSRT: 200ms; Mean SRT: 305ms; Median SRT: 291ms; CI [299, 310].

Fig. 2. Individual subjects’ minSRTs plotted against performance accuracy.
Note that for 3 student subjects minSRTs could not be computed (cf. Table S4).
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parameter estimates of the fixed effects for the Linear Mixed Model for
each group tested see Table S6.

5. Discussion

Human vision is a sensory system that is extensively investigated to
advance our understanding of cognition and brain functioning in gen-
eral. Similar to other sensory modalities, visual processing enables ex-
tremely robust categorization of external stimuli. Previous work has
demonstrated that the primate brain can for instance visually categorize
faces and animals in a highly proficient and rapid manner (e.g. Crouzet
et al., 2010; Fabre-Thorpe, 2011; Kirchner & Thorpe, 2006; Thorpe
et al., 1996; Rousselet et al., 2003). Visual categorization paradigms,
which are considered to involve activation of representations that im-
pact observers’ responses via maximal “presetting” of the visual system

for the task at hand , have been deployed to constrain theories of visual
processing (for a review see e.g., Fabre-Thorpe, 2011). For the most,
previous studies have focused on how visual categorization speed sti-
mulus varies as a function of response effector (e.g., Bacon-Macé et al.,
2007), stimulus category (e.g., Crouzet et al., 2010), processing level or
task- dependent information and diagnosticity (e.g., Schyns, 1998).

In the present study, we sought to systematically investigate the
extent to which visual categorization speed of complex visual stimuli is
affected by processing level and observers’ expectations, which can
vary depending on stimulus set size (cf., Ramon, 2018; Ramon et al.,
2018; Ramon & Rossion, 2010; Ramon, Busigny, Gosselin & Rossion,
2017; Ruffieux et al., 2017 ). To address this, we measured the speed of
gender, and familiar face categorization in a SRT paradigm (cf. Ramon
et al., 2018). Moreover, to address previously reported incompatible
findings regarding the speed of familiarity categorization (cf. Visconti

Fig. 3. Distributions of participants’ SRTs expressed during the gender categorization task. Hits and false alarms per time bin are indicated as thick and thin lines,
respectively. Vertical lines indicate each group’s min SRTs; along with average accuracy.

Fig. 4. Distributions of participants’ SRTs expressed during the personal familiarity categorization task with low (blue) and high (red) predictability. Hits and false
alarms per time bin are indicated as thick and thin lines, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Table 2
Accuracy, mean and min SRTs for choice saccades towards personally familiar faces as a function of stimulus repetition during familiarity decisions under high
predictability.

Department members (nlab_members) Students (nstudents_familiarity)

Block Accuracy in % Mean SRTs CI minSRTs Accuracy in % Mean SRTs CI minSRTs

1st 77 331 [277; 386] 250 73 350 [325; 374] 280
2nd 78 307 [239; 375] 300 74 330 [298; 361] 260
3rd 75 306 [238; 375] 340 76 326 [294; 357] 240
4th 76 293 [225; 361] 290 78 312 [280; 343] 220
5th 74 310 [241; 379] 260 79 318 [286; 350] 220
6th 74 306 [237; 374] 290 74 319 [287; 351] 240

Note that per block each stimulus was shown three times.
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di Oleggio Castello & Gobbini, 2015; vs. Besson et al., 2017; Mathey
et al., 2012; Ramon et al., 2018), we varied the number of personally
familiar face target identities to be detected (3 vs. 7, along with an
equal number of distractors). We reasoned that, beyond reconciling
these apparent inconsistencies in the face literature, our anticipated
findings of processing level and stimulus set size dependent categor-
ization would be relevant for both visual categorization specifically,
and cognition in general.

In line with previous findings (Ramon et al., 2018; cf. also Besson
et al., 2017), visual categorization proficiency varied with processing
level. Gender categorizations were performed more accurately and ra-
pidly than familiarity categorizations. Interestingly, gender categor-
ization latencies reported here and elsewhere (Ramon et al., 2018) were
comparable to those expressed when observers have to saccade towards
only a single target identity (140ms; Mathey et al., 2012). This is the
first line of evidence suggesting that it is not just the processing level,
task, or stimulus familiarity per se that determines visual categorization
speed.

Additionally, extending previous work (e.g., Miller, 1956; Palmer,
1994; Busey & Palmer, 2008; Kent & Lamberts, 2005; Lacouture &
Marley, 1995; Karpiuk et al., 1997), stimulus set size affected perfor-
mance expressed in the context of the same processing level, i.e. during
familiarity categorizations. Specifically, categorization was faster and/
or more accurate for smaller, as compared to larger stimulus sets.
Saccades could be directed towards more predictable targets (three
familiar identities) within ∼250ms, although lab members performed
more accurately than students. Increasing the number of targets did not
affect students’ mSRTs, but led to a decrease in their accuracy (76% vs.
68%). Lab members, on the other hand, responded slower (360ms), and
their performance was less accurate (82% vs. 74%).

The results reported here demonstrate that both processing level,
and decisional space, or stimulus set size affect categorization profi-
ciency. Our findings demonstrate that it is not “detection of personal
familiarity” (Visconti di Oleggio Castello & Gobbini, 2015) per se that
expedites categorization, but the experimental circumstances that en-
able the measured latencies. Note that individuals can be differently
affected by such procedural choices, with some observers’ performance
varying more in terms of response latencies, or accuracy, respectively.
Therefore, in order to determine the boundaries of visual categorization
speed, simply establishing mSRTs is insufficient.2 At least in the context
of categorization of complex visual stimuli, processing should not be
considered as fixed, but rather flexibly modulated through a combina-
tion of contextual and structural aspects, related to both procedural
choices (task, processing level, stimulus set) as well as the stimulus
category (e.g., Lipp et al., 2015; Craig et al., 2012; Schyns, 1998).
Disregarding such aspects can result in seemingly inconsistent findings
(cf. Lipp et al., 2015), spur scientific debates, and promote erroneous
conclusions. The challenge is therefore to carefully consider the con-
ditions under which categorization proficiency is observed, and adopt
the appropriate terminology to communicate the findings made (cf.
Ramon, 2018; Ramon et al., 2018; Ramon, in press; Ramon et al., in
press).

6. Conclusion

Our findings demonstrate the powerful effect that both processing
level and decisional space, as varied through stimulus set size, can exert
on visual categorization speed. Based on the present and previous
findings we emphasize the importance of adopting appropriate

terminology that respects the level of processing or task type (Besson
et al., 2017), stimulus repetition (Lewis & Ellis, 2000; Ramon et al.,
2011), and decisional space within which visual categorizations are
performed (Ramon et al., 2018; Ruffieux et al., 2017), which can ac-
count for contradictory findings and conclusions (Ramon, 2018; Lipp
et al., 2015; Ramon et al., 2018). To make this point, we demonstrate
that categorization speed modulation, which was previously attributed
to real-life familiarity (Visconti di Oleggio Castello & Gobbini, 2015),
can in fact be more parsimoniously accounted for in terms of observers’
expectations. We advocate for careful consideration of procedural as-
pects when categorization proficiency serves to constrain theories of
visual processing, and cognition more generally.
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