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Abstract. McManus (2013, Perception, 42, 1075–1084) contends the validity of the statistical approach 
adopted in previous versions of iMap (namely, iMap and iMap2; Caldara & Miellet, 2011, Behavior 
Research Methods, 43, 864–878), casts doubts on earlier results obtained with the toolbox, and 
offers an altered version of the code. Here we dispute these claims and argue that while some of 
the arguments put forward are valid, McManus’s conclusions are misleading, since they are based 
on a partial use of the toolbox. Moreover, we compared iMap with the alternative code offered by 
McManus and objectively demonstrate that McManus’s approach is underpowered and flawed. iMap 
offers an appropriate and effective alternative to the commonly used regions of interest approach for 
statistical analyses of eye-movement data.
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1 Introduction
In 2011 we released iMap, a freely available open-source Matlab toolbox dedicated to 
data-driven, robust statistical mapping of eye-movement data (Caldara & Miellet, 2011). 
Our approach was strongly inspired by the development of open-source toolboxes in 
neuroimaging, such as SPM (Friston, Worsley, Frackowiak, Mazziotta, & Evans, 1994), 
EEGLab (Delorme & Makeig, 2004), and Fieldtrip (Oostenveld, Fries, Maris, & Schoffelen, 
2011). Open-source toolboxes are constantly updated and improved thanks to user feedback, 
comments, and contributions. This approach and its scientific philosophy permit constructive 
and reactive updates to the software made necessary by continuous developments in statistics, 
novel theoretical and practical interests, types of data, methodology, and equipment.

The initial main goal of iMap was to offer solutions for data-driven analysis of eye 
movements, inspired by methods in functional magnetic resonance imaging. We were mainly 
aiming to avoid the use of subjective a priori defined regions of interest (ROIs), as discussed 
in the original paper (Caldara & Miellet, 2011). Facing the analyses of our own eye-movement 
dataset, the best strategy we found at the time (iMap1) was to compute image statistics on the 
fixation map averaged across observers in order to isolate data-driven fixation clusters; and 
then, in a separate analysis, to assess interobserver variability and to compute the statistical 
significance of group differences on individual data extracted by iMap from the fixation 
clusters (Blais, Jack, Scheepers, Fiset, & Caldara, 2008). In his paper McManus presents two 
valid limitations related to this approach (used in iMap from version 1 to version 2.1; hereafter 
iMap 1–2.1). Firstly, graphical outputs were not accounting for interobserver variability or 
number of participants. Secondly, because we normalized the fixation maps by the variability 
of their observer-averaged pixels, instead of normalizing by their per pixel variability across 
observers, spurious data-driven fixation clusters could show up on data with high observer 
variability, such as the randomized datasets of McManus. In short, iMap 1–2.1 graphical 
outputs were revealing data-driven fixation clusters, isolated as significant across pixels in the 
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observer-averaged maps according to the random-field theory and the pixel test (Adler, 1981; 
Chauvin, Worsley, Schyns, Arguin, & Gosselin, 2005). Hence McManus is right when saying 
that, with particular data distributions, contrast maps might have revealed fixation clusters 
that were not statistically significant across observers. However, using the full possibilities of 
iMap 1–2.1 (ie statistical analyses on the full eye-movement data, but selected from the data-
driven fixation clusters only) allowed users to also assess pixel-wise statistical significance 
with regard to the interobserver variability. Therefore, here we dispute the idea according to 
which using iMap 1–2.1 ineluctably leads to erroneous conclusions.

In addition, McManus attempted to address those limitations by offering a modified 
version of our code. Problematically, as demonstrated below, the approach put forward by 
McManus does not produce valid statistical fixation maps. In contrast, our new version 
of iMap (iMap 3), which adopts an original statistical approach, provides a self-contained 
statistical graphical analysis: the data-driven fixation clusters represent the correct rejection 
of the null hypothesis across observers. Consequently, the new version of iMap (version 3) 
simplifies the interpretation of the statistical maps and, overall, properly addresses the 
aforementioned limitations. In the following sections we will in turn contend McManus’s 
criticisms and present limitations of his approach.

2 iMap 1–2.1
On the basis of the limitations presented above, McManus distrusts previous results obtained 
with iMap 1–2.1. However, MacManus did not exploit all of the possibilities offered by 
the toolbox. iMap not only generates heat maps and isolates data-driven fixation clusters. 
It also gives access to various eye-tracking measures within these data-driven clusters—
measures that are not averaged across observers. McManus ignores these numerical outputs 
and focuses exclusively on the graphical outputs, thus making inconclusive any assumptions 
about iMap 1–2.1 validity. In contrast, we used those numerical reports, as they allowed the 
extraction of the raw or normalized data inside the detected clusters for each participant to 
subsequently test statistically the robustness of an effect across observers. This is the approach 
we applied from our first study (Blais et al., 2008) up to the more recent work (eg Miellet, 
Caldara, & Schyns, 2011). Altogether, this statistical approach ensured firm conclusions could 
be established, which would have been similar if we had used more conventional arbitrary 
ROIs. Moreover, the cultural fixation bias we observed in face processing has been replicated 
in multiple studies from our lab (Blais et al., 2008; Caldara, Zhou, & Miellet, 2010; Kelly, 
Miellet, & Caldara, 2010; Kelly et al., 2011; Miellet, He, Zhou, Lao, & Caldara, 2012; Miellet, 
Vizioli, He, Zhou, & Caldara, 2013). It is then unlikely that the same false positive was 
systematically found on identical locations in these studies. More importantly and objectively, 
the same bias has also been observed in several independent studies carried out by other labs 
using different methods (eg figure 3 in Kita et al., 2010 or figure 3 in Watanabe, Matsuda, 
Nishioka, & Namatame, 2011), as well as in infants (Fu, Hu, Wang, Quinn, & Lee, 2012; Liu 
et al., 2011).(1) In several of our studies the graphical contrast maps outputted by iMap 1–2.1 
revealed fixation clusters that we did not interpret as representing genuine effects because 
analysis of fixation durations across participants revealed an absence of statistical significance 
(see figure 4 in Miellet, Zhou, He, Rodger, & Caldara, 2010 or figure 2 in Miellet et al., 
2012). To conclude on this point, in general, if one distrusts the group statistics performed 
on individual data extracted from data-driven clusters or ROIs (which is the conventional 
approach in the eye-movement literature), then not only results obtained with iMap 1–2.1 
should be questioned, but practically all previous findings in the field.
(1) There are several other studies reporting a central fixation during face processing in Eastern observers 
with a variety of experimental designs. However, we felt that for the current purpose it was not appropriate 
to review them all.
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Recently, we became aware of the risk of double-dipping in using our approach 
(Kriegeskorte, Simmons, Bellgowan, & Baker, 2009) and addressed this issue in Miellet 
et al. (2013), where we introduced a bootstrapped split-half verification method in order to 
rule out this problem. Note that iMap3 does not present this risk of double-dipping, as the 
maps are representing self-contained statistical analyses.

Obviously, as for any toolbox or software, our position is that users should be fully 
responsible for their use (or misuse) of the tool. Thus, while being as transparent and explicit 
as possible in the manual and open-source code, being responsive, and offering useful 
support and advice to users, we cannot bear responsibility for potential misinterpretation of 
the results. Nonetheless, we must admit that our original paper about iMap could have been 
more explicit on this matter. We indeed implicitly assumed that users would make full use 
of the toolbox potentialities (ie computing group statistics on the basis of individual data 
extracted from the data-driven clusters), conforming to the analysis pipeline we adopted in 
our empirical work.

It is worth noting that interpreting graphical outputs is now more straightforward in the 
current version of iMap (from iMap3), as it provides a self-contained statistical graphical 
analysis. iMap3 has been formally validated and already used in a recent study (Miellet, Caldara, 
Raju, Gillberg, & Minnis, 2014). It would nonetheless be naive to think that there is no room for 
improvement in the latest version of the toolbox. As a matter of fact, we are currently testing 
and validating several crucial developments that will be released in the next version of iMap.

3 McManus’s approach
McManus offers an altered version of the iMap 1–2.1 code—a version that was not validated 
despite the author’s claim of a necessity to validate any released method. McManus performed 
a comparison between his approach and iMap 1–2.1. Firstly, McManus’s approach is by far 
too conservative from a statistical point of view, requiring an unrealistic number of data 
points in eye-movement research (at least 100 000 simulated fixations) to capture statistical 
differences. More critically, it also reveals an erroneous spatial extent of the effects and 
generates false positives.

These limitations are clearly apparent in McManus’s simulation comparing his approach 
with iMap2, in the absence and the presence of an effect. Firstly, according to this simulation, 
iMap2 is oversensitive and shows spurious noisy clusters in the absence of an effect [ie no 
difference (A vs B) comparison in figure 7, top row, in McManus’s paper]. In contrast, 
McManus’s approach does not reveal significant areas in the absence of an effect. However, 
we expect that statistics performed on individual fixation durations extracted from iMap2 
data-driven fixation clusters would not reveal any significant effect. McManus does not report 
this information in his paper.(2) Secondly, figure 7 in McManus’s paper also clearly shows 
that iMap2 accurately and consistently estimates the spatial extent of the true simulated effect 
[ie difference comparison (A vs B) in figure 7, bottom rows]. Hence, iMap2 data-driven 
fixation clusters could be exploited to extract individual data and perform statistical analyses 
across observers. In contrast, even with a simulated effect, McManus’s approach requires 
no less than 100 participants (1000 fixations each, 100 000 data points) to reveal significant 
‘genuine’ effects, but also more problematically false positives. Moreover, it is clear from 
the figure that the spatial extent of the ‘genuine’ effect is largely overestimated (ie figure 7: the 
50 + 50 and 100 + 100 simulations).

This observation suggests that—with noisier, but more realistic, experimental data—an 
even larger number of participants would be required to reveal such spatially overestimated 
effects. In fact, we tried McManus’s code on several of our datasets, and the results are 

(2) We do not have access to McManus simulated data and could not verify this aspect formally.
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Figure 1. [In colour online, see http://dx.doi.org/10.1068/p7682] (a) Raw data for Western Caucasian 
(WC, on the left) and East Asian (EA, on the right) observers followed by (b) statistical fixations 
(first and second columns for WC and EA, respectively) and contrast maps (third column) generated 
by McManus’s approach, (c) iMap2.1, and (d) the latest version, iMap3. For each toolbox the colour 
scale is centered on 0 and the range is set according to the largest absolute value computed by the toolbox 
in any of the three maps.
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far from convincing. For an illustrative purpose, we ran McManus’s code on one of the 
datasets (face example) presented in the iMap3 manual (downloadable on our website: http://
www.unifr.ch/psycho/ibmlab). Figure 1 shows a representation of the raw data (a) for the 
two groups of observers (Westerners and Easterners). Each dot represents a fixation location 
(without smoothing or normalization), and the cumulated fixation duration is colour coded 
(warm colours for longer fixations). The figure also shows both group fixation biases and the 
difference map for McManus’s approach (b), iMap2.1 (c), and iMap3 (d).

In the group maps McManus’s approach generates the largest absolute statistical values 
(–30), in locations where the participants do not, or very rarely, look. For instance, the absence 
of significant effects in the East Asian observers’ map should be interpreted as an absence of 
preferentially fixated areas for this group of observers (ie a homogeneous fixation distribution 
across the stimulus space). This observation is completely unfounded given the raw fixation 
data distribution represented above (figure 1a). The contrast map is also disconcerting. The 
absence of significant contrast is not only inconsistent with the contrast map and individual 
fixation durations reports generated by iMap2.1; it is also inconsistent with the self-contained 
statistical maps generated by iMap3, which adopt a completely different statistical approach. 
In the example of the cultural bias during free viewing of face stimuli, iMap3 reveals a 
similar results pattern as iMap2.1 and leads to the same conclusions.

It is important to mention that in his paper McManus claims that we implemented in iMap3 
“a method which essentially is that described here”. We find this statement misleading, as it 
suggests that both approaches are similar. This is absolutely not the case; the only similarity 
between both methods is that they use pixel-wise statistics across participants, as is performed 
for comparing voxel activations in most functional magnetic resonance imaging approaches. 
The critical point in statistical mapping is to find a way to determine significance and effect 
sizes. On this matter, McManus’s and iMap3’s approaches are fundamentally different and lead 
to radically divergent results and conclusions, as shown in figure 1. Contrary to imap2icmBeta 
(McManus’s approach), iMap3 does not rely on the random field theory to correct for multiple 
comparisons. Instead, it makes use of a bootstrapping procedure to determine the significance 
threshold after applying threshold-free cluster enhancement (Smith & Nichols, 2009) on 
t-values across participants for signal enhancement, as recently adopted in LIMO EEG (Pernet, 
Chauveau, Gaspar, & Rousselet, 2011).

4 Conclusions
We demonstrated that, despite the limitations put forward by McManus, a proper use of the 
iMap 1–2.1 toolbox (ie group statistics based on individual data extracted from data-driven 
fixation clusters; split-half procedure to control for double-dipping) allowed researchers to 
draw solid conclusions. Therefore, we do not concur with McManus’s doubts on the validity 
of previous research using iMap 1–2.1. We also demonstrated that McManus’s current 
approach is statistically flawed, even with simulated data. Moreover, McManus’s approach 
is not suited to satisfy the realistic constraints of conventional eye-movement research and to 
characterize and statistically test empirical findings. We challenge the author to replicate any 
of the effects shown in the eye-tracking literature in the last 40 years with his approach, using 
conventional sample sizes (typically around 30 observers) and number of fixations.

On a more positive note, iMap3 has been released. This new version keeps the general data-
driven philosophy of iMap (by avoiding the use of arbitrary ROIs) and implements a radically 
different statistical approach. Crucially, iMap3 has been formally validated with our data 
distributions(3) and has already been used in a published study (Miellet et al., 2014). We will not 

(3) Obviously, we cannot consider all the potential experimental situations and cannot anticipate all the 
possible data characteristics and distributions. We fully rely on users’ critical feedback to inform us 
about unexpected problems that might appear with specific equipment, tasks, stimuli, or data structures.

http://www.unifr.ch/psycho/ibmlab
http://www.unifr.ch/psycho/ibmlab
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describe the current version here, but the open-source code and a detailed manual are available 
on our website (http://www.unifr.ch/psycho/ibmlab). Contrary to McManus’s approach, our 
data and simulations show that iMap3 is an appropriate and effective method for statistical 
fixation mapping of eye-movement data.
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