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We learn and/or relearn motor skills at all ages. Feedback plays a crucial role in

this learning process, and Virtual Reality (VR) constitutes a unique tool to provide

feedback and improve motor learning. In particular, VR grants the possibility to edit 3D

movements and display augmented feedback in real time. Here we combined VR and

motion capture to provide learners with a 3D feedback superimposing in real time the

reference movements of an expert (expert feedback) to the movements of the learner

(self feedback). We assessed the effectiveness of this feedback for the learning of a

throwing movement in American football. This feedback was used during (concurrent

feedback) and/or after movement execution (delayed feedback), and it was compared

with a feedback displaying only the reference movements of the expert. In contrast

with more traditional studies relying on video feedback, we used the Dynamic Time

Warping algorithm coupled to motion capture to measure the spatial characteristics of

the movements. We also assessed the regularity with which the learner reproduced

the reference movement along its path. For that, we used a new metric computing

the dispersion of distance around the mean distance over time. Our results show that

when the movements of the expert were superimposed on the movements of the learner

during learning (i.e., self + expert), the reproduction of the reference movement improved

significantly. Furthermore, providing feedback about the movements of the expert only

did not give rise to any significant improvement regarding movement reproduction.

Keywords: virtual reality, self + expert modeling, motor learning, 3D feedback, DTW, observation, dynamic

time warping

1. INTRODUCTION

We all learn different sets of motor skills across our life span. Learning or re-learning motor skills
is even more essential for some individuals, as for instance for those who receive rehabilitation
therapy, for sport players, or in gesture-based professions such as surgeon or pilot. To learn or
re-learn the good/efficient gesture, learners often rely on tools or programs which usually provide
feedback to improve motor learning. This feedback should be understandable, contextual, and
relevant in order to best assist the learning process (Rhoads et al., 2014). Different kinds of feedback
can be used to improve motor learning. Specifically, the sensory feedback that directly derives from
our actions/movements is usually defined as inherent (or intrinsic) feedback, whereas feedback
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information provided by “external” sources is defined as
augmented (or extrinsic) feedback (Schmidt et al., 2018).
Augmented feedback that relates to the outcome of the action
is usually defined as “knowledge of result” (Horn et al., 2005),
whereas the term “knowledge of performance” has been used to
name augmented feedback relative to the movement pattern (i.e.,
shape/form of the movement). Our work focused on this latter
type of augmented feedback, namely knowledge of performance.

Augmented feedback relative to the movement pattern
usually consists in providing the learner with information about
his/her own movements and/or the movements of the expert.
Observational learning refers to self- or expert-observation. Self-
observation consists in observing oneself perform the movement
to be learned. The observation and monitoring of their own
movements allows learners to build a better representation of
their body in action. Expert-observation (or skilled-observation)
consists in observing an expert perform the movement to be
learned. The observation of the movements of an expert helps
learners to internalize and reproduce the target movements
(Scully and Newell, 1985). However, this type of feedback
relies on the learner’s ability to observe and compare their
movements with those displayed through the feedback, which
implies a good internal representation of their own movements.
Self- and expert-observation can be concurrent, i.e., occurring
during movement execution, or delayed, i.e., occurring after
movement execution. Research has demonstrated positive effects
of observation on the learning of motor skills and on learners’
performance (Ste-Marie et al., 2012). In particular, several studies
dedicated to gesture learning in sport have shown improvements
in the cognitive representation of the movement (e.g., Scully and
Newell, 1985) as well as in the production of new coordination
patterns (e.g., Williams and Grant, 1999).

Self- and expert-modeling are similar to self- and expert-
observation, but feedback is “edited” in order to provide only
the most relevant information to optimize the learning. As self-
observation, self-modeling helps the learner to “build” a better
representation of his/her movements. The main limitation of this
type of feedback is the absence of information regarding the
reference movement (Ste-Marie et al., 2012). Expert-modeling
is based on the concept of imitation, which plays a key role
in the acquisition of new skills (Gould and Roberts, 1981).
According to Scully and Newell (1985), the observation of a
model provides the learner with essential information, notably
regarding unfamiliar coordination patterns. The main drawback
of expert modeling is the lack of information related to the
self-representation of the learner. To overcome this problem, a
solution consists in adding feedback about the errors made by
the learner (Williams et al., 2003).

A more exhaustive, but also more demanding option consists
in providing the learner with feedback about both his/her own
movement and the reference movement of the expert. This
notably allows the learner to compare his/her performance with
that of the expert. Though this type of feedback is usually
named mixed modeling, here we will rather refer to Expert +
Self Modeling (ES-M), because the term mixed can also refer
to self + unskilled modeling (Rohbanfard and Proteau, 2011).
Most of the studies that addressed ES-M were based on video

feedback (Oñate et al., 2005; Boyer et al., 2009; Barzouka et al.,
2015; Arbabi and Sarabandi, 2016; Robertson et al., 2017). In
these studies, self-individual and expert model were usually
displayed separately, for instance by splitting the screen in two
sides (i.e., self-demonstration on one side and expert model on
the other side). Although watching and comparing movements
displayed in two separate videos is not an easy task, some studies
have demonstrated the efficacy of the ES-M approach (Baudry
et al., 2006; Boyer et al., 2009). In particular, ES-M usually gives
rise to better performance than expert modeling (Oñate et al.,
2005; Arbabi and Sarabandi, 2016) or self-modeling (Arbabi and
Sarabandi, 2016; Robertson et al., 2017). The advantage of ES-
M feedback over other types of feedback has been demonstrated
for a large range of movements, as for instance the badminton
serve (Arbabi and Sarabandi, 2016), the volley pass (Barzouka
et al., 2015), or the double leg circle on the pommel horse
(Baudry et al., 2006).

However, there are some limitations to the use of ES-M
in the above mentioned studies. First, feedback was always
delayed, i.e., participants were provided with feedback only
after movement execution. In addition, most of the time, video
feedback was augmented with a verbal feedback provided by a
coach/teacher (Oñate et al., 2005; Baudry et al., 2006; Boyer et al.,
2009). Therefore, it is not obvious to disentangle the respective
contribution of the video feedback and of the verbal feedback in
the measured learning performance. Another limitation relates
to the evaluation of participants’ performance. Specifically, some
studies focused on the outcome of the performance without
evaluating the technical execution (Barzouka et al., 2015). In
other studies, experts were asked to qualitatively evaluate the
technical/kinematic execution of the movement (Boyer et al.,
2009; Barzouka et al., 2015; Arbabi and Sarabandi, 2016;
Robertson et al., 2017). Though valuable, this kind of evaluation
is unfortunately quite subjective. Finally, in some studies,
performance was evaluated using biomechanical measures (e.g.,
Oñate et al., 2005 on knee orientation or Baudry et al., 2006 on
body segment alignments). Though quantitative, these measures
did not really and thoroughly assess the quality of movement
execution because they only focused on a targeted characteristic
at a given time.

Virtual Reality (VR) constitutes a valid and interesting
alternative to video to provide learners with ES-M feedback.
VR notably grants the possibility to add and mix 2D or 3D
information in order to combine self and expert modeling.
Specifically, VR can be used to superimpose two movements
in 3D, as for instance the movement of the learner and
that of the expert. This consists in simultaneously displaying
the two movements with minimal spatial offset, so that one
movement overlays the other one, as illustrated in Figures 1, 2.
Superimposing two movements is not possible with video
feedback, and viewers need to constantly switch between the
feedback relative to their own movement and that relative to
the movement of the expert. In contrast to video, VR also
allows to edit feedback and simplify it to provide only the most
relevant information. This notably limits the risk to cognitively
overwhelm the learner. In line with this, Poplu and colleagues
(Poplu et al., 2013) suggested that simpler feedback is often
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FIGURE 1 | Overview of the apparatus used and example of use.

better. In addition, VR gives the learner the ability to interact
with the provided feedback, which stimulates self-regulation (Ste-
Marie et al., 2012). Last but not least, by coupling VR with
motion capture, individual performance can be quantified in
terms of coordination, taking into account the spatial and/or
temporal characteristics of the movement. This quantification
grants a direct kinematic comparison between the movements of
the learner and those of the expert.

Regarding applications, VR has been widely used for motor
learning, and more specifically for rehabilitation (Yanovich and
Ronen, 2015; Ribeiro-Papa et al., 2016). However, few studies
combined self and expert modeling. In the few studies that
did, feedback was always provided during movement execution
(i.e., concurrent feedback). In most cases, a motion capture
system was combined to a virtual environment to synthesize
an avatar and superimpose the learner and the expert (Chua
et al., 2003; Chan et al., 2011; Hoang et al., 2016). For instance,
Chua et al. (2003) compared several feedbacks using the ES-M as
well as ESS-M, namely an ES-M variant in which the reference
movement of the expert is superimposed on the movement
of the learner. Note that in the “classical” ES-M variant,
the virtual expert is displayed next to the virtual participant.
These authors did not find any significant improvement of
the movement. Chan et al. (2011) used a virtual teacher for
dance training and compared expert modeling with ESS-M. In
their study, motor learning was significantly better with ESS-
M feedback than with expert modeling. Kimura et al. (2007)
used ESS-M feedback for posture learning. The authors measured
the time needed to reproduce the model poses. With ESS-M
feedback, participants needed less time to reproduce the model
postures in comparison with expert modeling. In a study in
which postures had to be learned, Eaves et al. (2011) obtained
significant improvements using a method blending the display
of the expert on a video and point lights representing specific
joints of the captured learner. Other systems using the Kinect
sensor showed that ES-M or ESS-M is efficient for motor
learning (Smeddinck, 2014; Hoang et al., 2016). Despite the
acceptable results obtained by several authors (Chan et al., 2011;

Eaves et al., 2011; Smeddinck, 2014; Hoang et al., 2016), some
limitations appeared in most of the cases. For instance, the
promising results obtained by Kimura et al. (2007) and Eaves
et al. (2011) only concerned posture learning. Waltemate et al.
(2015) explained that Kinect-based systems approximate the
capture and a feedback latency was systematically observed.
Other factors might also interfere with motor learning. For
instance, meshed avatars and rich virtual environments could
cognitively overload the learner, as could motion learning based
on the whole body and on displacement movements (Chua et al.,
2003; Burns et al., 2011; Chan et al., 2011). To overcome these
potential limitations, we propose to use a simpler feedback,
displayed in real time, focusing on the comparison between the
movement of the learner and that of the expert, and displaying
only the most relevant body parts relative to the movement to
be learned.

To assess the quality of movement execution, methods
dedicated to gesture learning in VR mostly used motion capture
systems and relied on geometrical comparisons performed on
the whole movement. Some studies focused on the whole
body (Eaves et al., 2011) or on a subset of joints (Chua
et al., 2003; Chan et al., 2011; Hoang et al., 2016). These
studies were based on the dynamic time warping algorithm
(DTW) (Chan et al., 2011; Morel, 2017). Other methods
focusing on comparison have been used for expressive motion
as for example the study of Aristidou et al. on folk dance
evaluation (Aristidou et al., 2015). To achieve this, the authors
relied on the a Laban Movement Analysis (LMA) method,
originally used for the description of human movement (see the
review of Larboulette and Gibet, 2015 for details on expressive
motion description). More specifically, the work of Senecal
et al. (2018) analyzed the performance of SALSA dancers. The
authors assessed dancers’ skills by considering the couple of
dancers as a single entity, and using metrics on specific features,
focusing on the rhythm, drive and style. In our study, we drew
inspiration from the methods previously used for the assessment
of isolated sport movement (i.e., those used in VR or with
video feedback).
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Purpose of the Study
The aim of this study was to assess and identify the advantages
of using VR-based feedback for motor learning. We particularly
focused on pattern/form reproduction, and our participants’
task was to reproduce as well as possible the movement of
an expert. We used a real time feedback superimposing 3D
movements of the expert on the movements of the learner
(ESS-M feedback). We notably assessed the effectiveness of ESS-
M feedback provided either during (i.e., concurrent) or after
movement execution (i.e., delayed). Previous studies showed
that expert modeling can be very effective for motor learning
(e.g., Horn et al., 2005, 2007), and more effective than self
modeling (e.g., Zetou et al., 2002; Ghobadi et al., 2013).
Therefore, we compared ESS-M with expert modeling (E-M)
feedback. The reference movement participants were required to
learn was a throw in American football. Lai et al. (2000) suggested
that the learning of this kind of movement usually starts with the
imitation of the basic features of the movement. It would be only
after this initial phase that the learner can adapt its movement
to different contexts. In order to focus the learner only on the
form/shape reproduction (i.e, reproduction of the spatial features
of the expert’s movement), our learning protocol consisted in
observing and trying to reproduce “online” the movements of the
expert, which were performed at different speeds (i.e., from slow
ones to the recorded execution speed).

Movement reproduction performance (i.e, how was the
pattern of reproduced movement) was quantified using two
measures based on the Dynamic Time Warping (DTW)
algorithm (Bruderlin and Williams, 1995; Morel, 2017).
Concerning the first measure, the DTW was used to compute
the spatial distance between the participant’s and the expert’s
movements. The second measure, which is a new measure
introduced here, consisted in evaluating the dispersion around
the mean distances between the expert and the participant over
time. In other words, this measure expresses the regularity of
the learners when reproducing/following the movement of the

expert. In addition to these two “kinematic” measures, we also
assessed the outcome of movement execution. For that, we
simply quantified the accuracy of the throws by measuring the
distance to the target.

2. MATERIALS AND METHODS

2.1. Participants and Design
Fifty-three right-handed participants (44 men, 9 women) aged
from 21 to 29 (average 24.1) participated in the experiment.
All participants had a first experience in throwing sport.
However, none of them had experience in American football.
All participants signed an informed and written consent prior to
their inclusion in the study. This was done in accordance with the
ethical standards specified by the 1964 Declaration of Helsinki.
Participants were randomly assigned to five groups: 4 groups of
eleven participants and one group of nine participants. Note that
two left-handed participants were withdrawn from one of the
groups because they induced computational errors during the
post-processing stage, all other participants being right-handed.
Each group was provided with a different type of visual feedback
to learn the American football throwing.

2.2. Apparatus
Movements were captured using the Optitrack
system (NaturalPoint Inc. , 1996) with 12 infrared cameras
distributed in a 9 x 6 m room. Only one light indirectly
illuminated the room (75 watt halogen lamp). These cameras
were specifically positioned and oriented to capture a volume of
∼ 18 m3 (2.5 x 2.5 m on the ground and 3 m in height) centered
on the participant. Each participant wore 49 reflected markers.
The acquisition frequency was 120 frames per second. The
reconstruction of the marker positions as well as the skeleton was
achieved in real time using the Motive software (NaturalPoint
Inc. , 1996) on a dedicated PC. A second PC was dedicated to
the control of the application, the skeleton animation and the

FIGURE 2 | Overview of the pipeline of our system.
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scene rendering. A UDP network was used for communication
between the two computers (see Figure 2 for the distribution of
the tasks). The network latency was in the 4–6 ms range. The
software application dedicated to the feedback computation and
the 3D display was implemented using C++/OpenGl with the
SFML library. The display frequency was around 150 frames
per second. The projection screen on which the visual feedback
was displayed was 4 m wide and 2.7 m high (see Figure 1).

2.3. Procedure
After a general and a throw-specific warm up of 20 min,
participants put on a suit dedicated to the tracking and equipped
with the 49 infrared markers. The suit was chosen to fit the size of
the participant. An expert demonstrated the throwing movement
and gave oral instructions on the position and rotation of each
joint involved in the motion (i.e., pelvis, arm, hand), as well
as on the appropriate way to hold the ball, to throw it, and
to produce rotation effects. The participants were asked to
perform standing throws (see Figure 3 for an illustration) to a
target displayed on the impact screen at a 5 m distance of the
participant (see Figure 1). The throw was performed with an
official football. At the beginning of the experiments, participants
were instructed that learning the movement was their primary
task, and that aiming at the target was only a secondary objective.
Each participant performed 5 trials to familiarize him/herself
with the movement. The participants were then instructed about
the experimental protocol. The experiment consisted of 3 phases:

• Pre-test: Each participant performed 10 throws (without run-
up) in front of the screen. The movements were captured and
the distance to the center of the target was measured. The
participant was free to perform each throw when he/she was
ready (as described below, this phase was captured in a single
session before being manually segmented).

• Learning. Each participant performed 50 training throws.
He/she had to follow the movement of the virtual expert as
closely as possible. The type of provided feedback depended
on the group. With the superimposition-based feedback (see
section “feedback” below), the participant had to follow
the pace and “fit into” the expert’s movement. Five speeds
variations were used to propose 5 different i.e., 20, 40, 60,
80, and 100 % of the real movement speed, i.e., the speed
of the expert movement. The superimposition-based feedback
was provided for the five variations, with 10 repetitions
per variation. Before each training throw, the learners were
warned by the experimenter that the expert’s movement was
about to start. The participants were instructed to perform the
throws according to the different phases given by the expert’s
movement, i.e., from the beginning of the “early cocking”
phase to the end of the “follow through” phase (see Figure 3
for details).

• Post-test. The post-test phase was identical to the pre-
test phase.

2.4. Materials and Feedback
The recorded expert movement was the movement of a
quarterback in American football. Motion capture conditions

FIGURE 3 | The different phases of the American football throwing.

followed the specifications stated above (see section 2.2). An
expert in American football and in motion capture selected
the reference movement among 20 throws performed by the
expert player. As illustrated in Figure 3, the sub-parts of the
throwing movement were then cut manually from the beginning
of the “early cocking” phase to the end of the “follow through”
phase. No filtering step was necessary because for the selected
movement, the automatic labeling (retrieval of virtual markers
at each time step) was optimal. In addition, there was no marker
inversion, and the reconstruction of the animation of the skeleton
led to fluid motions without any animation artifact.

2.4.1. Feedback
Virtual reality technology can be used to provide different types
of feedback, such as the expert’s movements, the participant’s
movements, or a combination of the two. Irrespective of the
type of feedback, it can be provided during movement execution
(concurrent feedback), or after movement execution (delayed
feedback). Five different types of visual feedback were provided
to the five groups of participants during the learning phase of
the experiment:

• Group Control, without feedback: no feedback was provided,
either during or after movement execution.

• Group E-E: During movement execution and after each
repetition, participants were shown the movement of the
virtual expert.

• Group E-ESS: During movement execution, participants were
shown the movement of the virtual expert. After each
repetition, participants were shown their own movement as
well as the movement of the virtual expert that was displayed
in superimposition to their own.

• Group ESS-E: During movement execution, participants were
shown their own movement as well as the movement of the
virtual expert in superimposition. After the movement, they
were shown the movement of the virtual expert.

• Group ESS-ESS: During movement execution and after each
repetition, participants were shown their own movement and
the movement of the virtual expert in superimposition.
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2.4.2. Display
In accordance with the results of Runeson (1994), Scully and
Carnegie (1998), and Poplu et al. (2013), only movement-related
information was displayed, namely the segments of the 3D avatar.
The 3D virtual scene consisted of a ground represented by a grid.
The expert’s skeleton was displayed in green and the participant’s
skeleton in red.

2.4.3. Camera
For all conditions, the scene camera was set with a third-person
perspective configuration, and it was always focused on the
3D avatar of the participant, as illustrated in Figure 1. This
configuration was chosen by an expert in American football in
order to show the most relevant information of the throwing
movement. As illustrated in Figure 1, feedback was shown to the
participants with an orientation corresponding to a 180-degrees
rotation of the camera with respect to their point of view. The
camera was placed high up.

2.4.4. Skeleton Alignment (Figure 2.ON3)
The alignment of the participant’s skeleton with the expert’s
skeleton (i.e., positioning and orientation) was automatically
computed just before the beginning of each movement (the
experimenter clicked on a button when the participant was
ready). As illustrated by the step ON 3 in the Figure 2, a
geometrical transformation was applied to match the position
and orientation of the left foot of the virtual participant with the
left foot of the virtual expert (note that the left foot corresponds
to the supporting foot for the throwing movement). In addition,
the skeleton was scaled according to the expert’s height to fit to
the skeleton of the virtual expert.

2.5. Data Analysis
The aim of this experiment was to assess the effectiveness of ESS-
M feedback for motor learning, with a particular focus on the
pattern/form reproduction. To achieve this goal, we compared
the participant’s movement with the movement of the expert
using two dependent variables measuring the spatial distance
between the two movements. We also assessed the outcome of
the throws by measuring throwing accuracy/error.

For the pre and post phases (2× 10 samples), we collected: (a)
the whole movements of participants (motion-captured) and (b)
the distances to the target. Regarding (b), the ball left a mark on
the impact screen. The ball-target distance dtarget was manually
measured. Regarding (a), the Dynamic Time Warping algorithm
(DTW) was used to measure the distance between the expert’s
and the participant’s movements (Berndt and Clifford, 1994).
DTW is widely used for time series comparison. In this context,
two time series are represented by a series of postures (Bruderlin
and Williams, 1995). Specifically, the algorithm consists of
two steps:

1. First, it builds a matrix of distances M between the two
movements Mexp and Mpart. The dimension of M is n ×

m, where n and m are the number of postures into Mexp

and Mpart, respectively. Each element of M corresponds to

the distance d
p

k,l
between two postures Mexp(k) and Mpart(l),

where k ∈ [0, n] and l ∈ [0,m]. A posture is considered by

a sub-skeleton including the joints of the upper body (i.e.,
hips, the two spine joints, neck, head, left/right shoulder,
right/left arm, right/left elbow, right/left wrist). Each joint j
is represented by a position pj ∈ R

3. Finally, the distance

between two postures is given by d
p

k,l
=

∑

j ||p
j

k
− p

j

l
||2,

where k and l correspond to the posture indexes of the expert’s
and participant’s movements, respectively. As explained in the
previous section, each skeleton of Mpart is scaled (not re-
targeted) according to the size of the expert’s skeleton before
the computation of the DTW.

2. The algorithm computes an optimal warping path
pdtw between Mexp and Mpart. pdtw has the minimal
total cost among all possible warping paths of M.
pdtw = {(0, 0), ..., (k, l), ..., (n,m)} minimizes the global
distance betweenMexp andMpart.

The outputs of the DTW are: (a) the best mapping betweenMexp

andMpart represented by pdtw. (b), the global distance ddtw, which
sums up the distances of all elements contained in pdtw and takes
into account the spatial and temporal aspects. (c), the normalized
distance ds

dtw
on pdtw that better describes the spatial distance

(Shen and Chi, 2017):

dsdtw =
ddtw

n+m
. (1)

This metric quantifies the error related to the execution of
the movement. However, because the learner’s skeleton is not
re-targeted, the measure might be affected by morphological
differences between the learner and the expert. To get around
this kind of problem, Morel et al. (Morel, 2017) have recently
proposed, for karate tsuki and tennis serve, to take several
movements of the expert and extract a "nominal" movement
by using the DTW to interpolate these different movements.In
addition, a spatial tolerance is computed for each joint, and then
taken into account in the movement comparisons. However,
without mathematical proof or experimental tests, the validity
and consistency of this 3D nominal motion can be questioned
since the generated skeleton does not preserve the morphological
structure of the body. Accordingly, we chose here to use the
standard deviation along the path (d) dσ

dtw
:

dσ
dtw =

√

∑

|pdtw(i)− ds
dtw

|2

lpdtw
, (2)

where lpdtw is the length of pdtw and pdtw(i) is the distance

computed for the ith element of pdtw. By evaluating the dispersion
of distance around the mean distance over time, dσ

dtw
dissociates

the error resulting from morphological differences between the
learner and the expert. In addition, this measure expresses
the regularity with which the learner follows/reproduces the
movements of the expert along its path. By matching these results
with the spatial distance to the expert, we assessed the ability of
each participant to uniformly improve his/her movement along
the whole “path” of the movement. For example, if the overall
spatial distance with the expert improves while its dispersion
value worsens, that means that the execution of some portions of
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FIGURE 4 | Spatial difference between the learner’s movement and the movement of the expert (upper panel) and execution regularity (lower panel) before (red) and

after (cyan) motor learning. The p-values correspond to the post-pre comparisons. The tables (right panels) summarize the statistical comparisons between learning

conditions (groups) in terms of post-pre improvement.

the movement improved while the execution worsened for other
portions of the movement.

Finally, for each participant’s movement, a distance to the
expert is obtained. All movements were cut manually by two
experts in American football with good knowledge of motion
capture post-processing. This represents a total of 2 ∗ 10 ∗ 53 =

1060 sub-movements illustrated in Figure 3.

2.6. Statistical Analysis
We used three dependent variables, namely the three measures
defined in the previous section: dθ

dtw
, ds

dtw
, dtarget . There were

two independent variables, namely the learning method (with 5
levels, corresponding the 5 groups) and the test session (with 2
levels, namely pre and post). First, for each dependent variable,
we performed a one-way analysis of variance to compare the
average performance of the five groups in the pre phase. This
notably allowed us to make sure the initial performance was
similar in all groups. Then, for each dependent variable and each
group, we assessed whether the learning gave rise to a significant
improvement. For each group, the mean performance in the
pre-phase was compared to the mean performance in the post-
phase using either a Student’s t-test for repeated measures (when
data was parametric) or a Wilcoxon signed-rank test (when

data was non-parametric). Normality was assessed running the
Shapiro-Wilk test. Finally, for each dependent variable, we
directly compared the effectiveness of the five types of feedback
for motor learning. For each dependent variable, each group
and each participant, motor improvement was computed as
the difference between the post and the pre performance. We
first tested the interaction effect between the two dependent
variables on the average and the standard deviation using a
MANOVA. The average motor improvement was then compared
between the 5 groups using either a one-way ANOVA (when
data was parametric) or a Kruskal-Wallis test (when data was
non-parametric). For all tests, alpha was set at 0.05. Post-hoc
tests were performed using t-tests with Bonferroni correction
for multiple comparisons or Dunn’s rank sum comparisons (for
non-parametric data).

3. RESULTS

3.1. Comparison to the Expert
All the results presented in this section concern the distance
between the participant’s and the expert’s movements. The
dependent variable ds

dtw
quantifies the difference of spatial

characteristics between the movement of the participant and the
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FIGURE 5 | Aiming accuracy as measured as the distance to the target before (red) and after (cyan) motor learning. The p-values correspond to the post-pre

comparisons. The table (right panel) summarize the statistical comparisons between learning conditions (groups) in terms of post-pre improvement.

movement of the expert. The dependent variable dσ
dtw

quantifies
the regularity with which participants reproduced/followed the
movement of the expert.

3.1.1. Pre Phase Group Comparison
The mean ds

dtw
and the mean dσ

dtw
measured in the pre-

phase were compared between the five groups using a one-way
ANOVA. Neither the mean ds

dtw
F(4, 48) = 0.69, p = 0.59 nor

the mean dσ
dtw

F(4, 48) = 1.10, p = 0.37 differed between the
different groups.

3.1.2. Motor Spatial Characteristics for Post-pre

Comparison
Figure 4 presents for each group the average performance with
ds
dtw

and dσ
dtw

in the pre and post phases, as well as the p-value
of the post-pre comparison (left panel of the figure). As shown
in the figure, the average performance on spatial imitation (i.e.,
distance to the expert ds

dtw
) improved for all groups (i.e., smaller

distance in the post-phase), except for the control group. This
improvement was significant for the E-ESS and the ESS-E groups,
but it failed to reached significance for the other groups. The
same pattern of results was observed for the dσ

dtw
.

3.1.3. Motor Improvement Between Groups
Because our two dependent variables were likely to be related
and to share some variance, we first ran a MANOVA (with the
type of feedback as independent variable, i.e., 5 independent
groups). The Pillais trace test indicated a significant effect of
the type of feedback [V = 0.47, F(8, 96) = 3, 73, p <

0.001] on the average distance and on the standard deviation
improvements. We then ran two separate one way ANOVAs
on the two dependent variables. For both the ds

dtw
[F(4, 48) =

7.35, p < 0.001] and the dσ
dtw

, [X2
(4)

= 17.5, p < 0.01], the

average improvement differed significantly between groups (see
Figure 4, right panels). Post-hoc tests indicated that for ds

dtw
,

the improvement was significantly larger with E-ESS and ESS-E
feedback than without feedback (i.e., control group). In addition,
the improvement was significantly larger with ESS-E feedback
than with E-E feedback. Regarding dσ

dtw
, the pattern of result was

TABLE 1 | Correlations between the motor skill improvements and the accuracy.

C E-E E-ESS ESS-E ESS-ESS

ds
dtw

r(8) = 0.005 r(8) = −0.36 r(6) = 0.46 r(8) = −0.28 r(7) = 0.26

dσ
dtw

r(8) = 0.31 r(8) = 0.31 r(7) = −0.37 r(8) = −0.43 r(8) = −0.7

almost the same, but the ESS-E and the E-E condition did not
differ from one another.

3.2. Distances to the Target (Accuracy)
Reaching accuracy in the pre-phase was similar for all five groups
[X2

(4)
= 1.67, p = 0.79]. As illustrated in Figure 5 (left panel),

throwing accuracy improved only for the control group (p <

0.05) and the group that trained with ESS-ESS feedback (p <

0.01). The improvement after learning, i.e., the difference post-
pre, differed significantly between groups [X2

(4)
= 12, p < 0.01,

see Figure 5, right panel]. In particular, accuracy improvement
was significantly larger for the control (C) and the ESS-ESS group
than for the E-E group.

3.3. Correlation Between the Improvement
of Motor Execution and Throwing Accuracy
We also analyzed the relation between the improvement of motor
execution (i.e., difference post - pre for the three dependent
variables, namely ds

dtw
and dσ

dtw
) and the improvement of

throwing accuracy (see Table 1). Correlations were performed
using the Pearson correlation coefficient, because data was
parametric for all performed correlation tests. The influential
points considered as outliers using the Cook’s Distance (Cook,
1977) with a cut-off 6/n were removed.

For the ESS-ESS group, we observed a strong negative
correlation between the dσ

dtw
and throwing accuracy [r(8) =

−0.7], indicating that throwing accuracy was inversely related to
movement execution (as evaluated by our method). Regarding
the dσ

dtw
, moderate correlation with throwing accuracy was

also observed for the E-E (negative) and the E-ESS (positive)
group. Regarding the ds

dtw
, a moderate positive correlation with
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throwing accuracy was observed for the C and the E-E group,
whereas a moderate negative correlation was observed for the
E-ESS and the ESS-ESS group. Overall, these results indicate
that no clear pattern of correlation can be identified between
movement execution and throwing accuracy, which makes sense
considering that participants were specifically instructed to focus
on movement execution, without any instruction regarding
throwing accuracy.

4. DISCUSSION

We investigated the effectiveness of superimposed expert+self
modeling (ESS-M) feedback in VR for motor learning. In
particular, we compared the effectiveness of this type of
feedback to that of expert modeling feedback. Depending on
the condition, each type of feedback was provided either during
movement execution (concurrent feedback), after movement
execution (delayed feedback), or both during and aftermovement
execution. Participants had to learn a throwing movement in
American football, i.e., a partial movement for which this type
of feedback has been recommended (Kimura et al., 2007).
The effectiveness of feedback on motor learning was assessed
using three different measures. Two of these measures were
dedicated to the pattern/form of the movement, i.e., to the spatial
characteristics of the upper bodymovement. Movement accuracy
was measured using aiming error.

The group that was not provided with any feedback (control
group) did not show any improvement in the reproduction of
the movement pattern. Specifically, neither the two dependent
variables quantifying the spatial distance to the movement of the
expert did improve after learning without feedback. Movement
reproduction in this group actually tended to be worse in
the post than in the pre session (though this effect was non-
significant). This result is consistent with previous studies in
which no improvement was observed without feedback (i.e., with
video feedback Oñate et al., 2005; Baudry et al., 2006 and in
VR Eaves et al., 2011). On the other hand, aiming accuracy
improved significantly for this group (p < 0.01). This can
likely be explained by the fact that in this condition, participants
could focus most if not all of their attentional and cognitive
resources on throwing accuracy, because they did not receive any
feedback/information about the form of the movement.

The group that was provided with expert modeling feedback
did not improve the form of the movement either. Specifically,
neither the spatial distance nor the regularity to follow the expert
(p = 0.21 and p = 0.53, respectively) were significantly
better after the learning session. This lack of effectiveness can
probably be explained by the lack of information related to the
own movement of the learner (Famose et al., 1979; Lejeune
et al., 1994; Fery and Morizot, 2000). Indeed, the absence of
feedback comparing the two movements makes it more difficult
to optimally use the information given by the “ideal” one.
Learners of the E-E group did not improve their aiming accuracy
either. This finding is at odds with previous works that observed
immediate performance benefits of expert modeling feedback
(Rohbanfard and Proteau, 2011 and Barzouka et al., 2015).

Note that in our task, the learners were explicitly instructed
to primarily focus on the form of the movement. Without
any possible direct comparison with the “ideal” movement,
participants might have focused even more on their “sensations”
when producing the movement, which in turn prevented any real
improvement in aiming accuracy. This line of reasoning actually
holds for all conditions in which feedback was provided.

Regarding the groups that were provided with superimposed
expert+self feedback, namely the three groups that received ESS

feedback either during and/or after movement execution, they all
showed an improvement of movement reproduction/execution
after learning. Specifically, except for the ESS-ESS group, spatial
distance with the movement of the expert was significantly
reduced after learning. Note that for the ESS-ESS group, the
improvement barely failed to reach significance, with p = 0.05.
These findings are in line with previous studies on ES-M with
video feedback (Oñate et al., 2005; Baudry et al., 2006; Boyer
et al., 2009; Barzouka et al., 2015; Arbabi and Sarabandi, 2016;
Robertson et al., 2017) as well as with studies on ESS-M with VR-
based feedback (Chan et al., 2011; Hoang et al., 2016). Regarding
the regularity with which learners reproduced the movement
of the expert, here again superimposed expert+self feedback
gave rise to a performance improvement. This improvement was
significant for the ESS-E and the E-ESS groups, and it barely failed
to reach significance for the ESS-ESS group(p = 0.08).

Although the ESS-ESS feedback failed to significantly improve
movement regularity, taken together, our findings suggest that
ESS modeling allowed the participants to better and more
uniformly imitate the expert over time, either when provided
concurrent or delayed feedback. In that respect, our results
are in line with those reported by Hoang et al. (2016) who
observed significant improvements in the production of an
upper body karate movement using superimposition feedback.
ESS-E (p = 0.53) and E-ESS feedback (p = 0.41) did not
allow participants to improve their aiming accuracy. Similar
results were obtained by Ashford et al. (2006), who measured
greater changes in movement kinematics than in the outcome
of the movement.However, the absence of improvement in
aiming accuracy for these groups might seem surprising and
somewhat counterintuitive. Indeed, though participants in this
group did not improve their aiming accuracy after training,
they did improve their throwing movement pattern. Actually,
this “pattern of result” seems to generalize to all groups in our
experiment. Specifically, the groups that significantly improved
their movement production (i.e., that best reproduced the
movement of the expert after learning) failed to significantly
improve their aiming accuracy. This was the case for the E-ESS

and ESS-E groups. The ES-ES group constitutes an exception
to this pattern, as for this group, we found a moderate positive
correlation between the improvement of movement execution
and throwing accuracy. On the other hand, the groups that
failed to significantly improve their movement production and
instead “preserved” their original movement pattern did improve
their aiming accuracy. This was the case for the C and ESS-
ESS groups. This finding is notably confirmed by the negative
correlation between the regularity to follow the expert and
throwing accuracy: r(8) = 0.7 (p < 0.05). Therefore,

Frontiers in ICT | www.frontiersin.org 9 August 2019 | Volume 6 | Article 16

https://www.frontiersin.org/journals/ICT
https://www.frontiersin.org
https://www.frontiersin.org/journals/ICT#articles


Le Naour et al. 3D Virtual Feedback for Motor Learning

taken together, these results suggest that altering one’s own
movement pattern negatively affects aiming accuracy, at least
transiently, when the learner is still in the acquisition phase
of the “ideal” movement. This makes sense because during
this learning phase, the learner must modify his/her “natural”
movement pattern to adopt an “unnatural” movement pattern.
However, correlation tests did not reveal any clear relationship
between the improvement (or the lack there of) in movement
reproduction and accuracy improvement. A possible additional
explanation for the lack of improvement in aiming accuracy is a
potential disinterest of the participants in the aiming task and a
stronger focus on the motor learning of the movement form, as
actually instructed.

For both the spatial distance to the expert and the regularity
with which the expert’s movement is followed, the ESS-E and
the E-ESS group improved significantly more than the control
group (p < 0.01 in all cases). Regarding spatial distance, the
improvement of the ESS-E group was also significantly larger
than that of the E-E group (p < 0.05), but this improvement
was apparently not uniformly distributed over time. This result
is consistent with previous studies showing that ESS modeling
gives rise to significantly larger motor improvements than expert
modeling (Oñate et al., 2005; Arbabi and Sarabandi, 2016).
Concerning aiming accuracy, as mentioned above, only the C
and the ESS-ESS feedback gave rise to significant improvements.
Comparisons between groups confirmed that the improvement
in aiming accuracy was larger for the C and the ESS-ESS

group than for the group that was provided with expert
modeling feedback.

Another important finding is the absence of real difference
between concurrent and delayed feedback. In other words,
our results suggest that both concurrent and delayed feedback
effectively improve the pattern/form of the movement. However,
as observed by correlation tests this improvement is not
associated with an improvement of the aiming accuracy, at
least for the initial learning phase (i.e., what we tested here). A
longer training phase, possibly coupled to some slight changes
in the instructions given to the learner would probably easily
solve this issue. Our study focused specifically on the learning
of the movement form. Therefore, we focused on DTW-based
measures to “geometrically” compare the movement of the
learners with the movement of the expert. One limitation
of our study is that neither the learning nor the evaluation
focused on more “dynamic/timing-related” measures such as
speed variations or acceleration. These points could be addressed
in a complementary study specifically devoted to investigate
these aspects.

5. CONCLUSION

The main goal of our study was to assess the effectiveness of a
feedback superimposing self and expert avatars for the learning
of a motor skill. The superimposition of self and expert feedback
relied on the use of motion capture. This technology captures
kinematic information of the movement with accuracy, which

grants a high quality of quantitative measures. Furthermore, the
dynamic time warping algorithm was used to measure the spatial
characteristics of the movements. A new metric computing the
dispersion of distance around the mean distance over time was
introduced. This metric notably allowed us to determine if the
learners “uniformly” improved their movements, i.e., along the
whole course of the movement.

Previous studies based on expert+self feedback with video
did not use either superimposition or concurrent feedback. In
addition, previous studies using a similar type of feedback in
VR only reported contrasted results. Our results show that
the superposition of self and expert modeling can constitute
an effective feedback to improve motor learning, at least for
partial movements such as the throw in American football. One
should mention here that most previous works in VR using this
type of feedback addressed the learning of complex movements
implying the whole body, and sometimes with wide motion
(as for example with dance). This might explain the reported
contrasted results. Taken together, these results support Kimura’s
suggestion to use superposition only for partial movements
(Kimura et al., 2007). The results of Hoang et al. (2016),
who addressed the motor learning of upper body movements
in karate, tend to also support this suggestion. Importantly,
in our experiment, expert+self modeling proved better than
expert modeling to learn the movement pattern. Specifically,
“concurrent expert followed by delayed self + expert feedback,”
or “concurrent self + expert and delayed expert feedback”
gave rise to significant improvements in the production of
the movement pattern. However, these types of feedback failed
to improve aiming accuracy. Our results suggest that self +
expert as concurrent and delayed feedback might constitute the
best “compromise” to improve both the movement pattern and
aiming accuracy.
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