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Fall risk in elderly people is usually assessed using clinical tests. These tests consist in a subjective eval-
uation of gait performed by healthcare professionals, most of the time shortly after the first fall occur-
rence. We propose to complement this one-time, subjective evaluation, by a more quantitative
analysis of the gait pattern using a Microsoft Kinect. To evaluate the potential of the Kinect sensor for
such a quantitative gait analysis, we benchmarked its performance against that of a gold-standard motion
capture system, namely the OptiTrack. The ‘‘Kinect” analysis relied on a home-made algorithm specifi-
cally developed for this sensor, whereas the OptiTrack analysis relied on the ‘‘built-in” OptiTrack algo-
rithm. We measured different gait parameters as step length, step duration, cadence, and gait speed in
twenty-five subjects, and compared the results respectively provided by the Kinect and OptiTrack sys-
tems. These comparisons were performed using Bland-Altman plot (95% bias and limits of agreement),
percentage error, Spearman’s correlation coefficient, concordance correlation coefficient and intra-class
correlation. The agreement between the measurements made with the two motion capture systems
was very high, demonstrating that associated with the right algorithm, the Kinect is a very reliable
and valuable tool to analyze gait. Importantly, the measured spatio-temporal parameters varied signifi-
cantly between age groups, step length and gait speed proving the most effective discriminating param-
eters. Kinect-monitoring and quantitative gait pattern analysis could therefore be routinely used to
complete subjective clinical evaluation in order to improve fall risk assessment during rehabilitation.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Falls in elderly people very often have dramatic consequences,
such as fractures, trauma, hospitalization, or even death (World
Health Organization, 2008). Most of these falls result from estab-
lished impairments of gait and balance stability. Devices quantify-
ing gait and balance, such as force platforms, motion capture
systems, or actimetric carpets, exist. However, they are often
costly, and they require time and space to be set up, which consid-
erably limit their use for clinical testing. We think that providing
an automatic and efficient quantitative method coupled to a simple
motion capture system would allow healthcare professionals to
circumvent this limitation. In line with this, we propose a system
based on the Microsoft Kinect, a low cost and non-intrusive ambi-
ent sensor, to extract gait parameters identified in the geriatric
literature as the most relevant to assess fall risk (Hausdorff et al.,
2001; Auvinet et al., 2003; Studenski et al., 2003).
Several studies showed that the Kinect is accurate to extract
spatiotemporal parameters (see Springer and Yogev Seligmann,
2016 for a review), and thereby well-suited for gait assessment.
Some studies compared the Kinect with a marker-based three-
dimensional motion analysis (by using one Kinect version 1 sensor:
Chang et al., 2012; Clark et al., 2013; Stone and Skubic, 2011; Xu
et al., 2015; Galna et al., 2014; four Kinect v2: Geerse et al.,
2015; one Kinect v2 Mentiplay et al., 2015; one Kinect v2 and
markers Ye et al., 2016). Regarding marker-less systems, Gabel
et al. (2012) compared Kinect v1 with pressure sensors placed
inside the shoe, whereas other authors compared the Kinect v1
to an actimetric carpet (Motiian et al., 2015; Baldewijns et al.,
2014).

Here we compared gait parameters extracted using a single
Kinect sensor with those extracted using a twelve cameras Opti-
Track system as reference. We also assessed which gait parameters
differed significantly between age groups, because those were
likely the best predictors of fall risk (World Health Organization,
2008; Gryfe et al., 1977; Lord et al., 2001). All above-mentioned
studies, and more generally most of the studies on gait analysis
with the Kinect sensor are based on the Microsoft SDK (with the
exception of Stone and Skubic Stone and Skubic, 2011). We relied
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instead on an algorithm developed by Dubois and Charpillet
(2017). The reason was that an accurate representation of the
skeleton and the body segments is not necessary to extract the
spatio-temporal parameters of gait. In our study, the parameters
were extracted from the vertical displacement of the geometric
center of the body. This approach has two main advantages. First,
parameters can be extracted even if the feet of the walking person
are occluded, which is likely to occur in a furnished room. Second,
the performance of the analysis is relatively unaffected by the
angle of view of the sensor.
Table 2
Bland-Altman bias (limits of agreement), and percentage error (PE) (computed as
100�(2 SD of bias))/ððMeanKinect þMeanOptiTrackÞ=2Þ for the two systems.

Bias (95 % LoA) PE (%)

Step length (cm) 1.95 (�2.10 to 6.01) 6.28
Step duration (s) �0.003 (�0.044 to 0.039) 7.17
Cadence (step/s) 0.000 (�0.124 to 0.124) 7.05
Gait speed (cm/s) 4.00 (�6.134 to 14.145) 8.96
2. Method

Participants of three different age groups participated in the
experiment: eight young individuals (five women, three men) aged
23–28 (mean = 25 years), nine older participants (five women, four
men) aged 67–73 (mean = 69 years), whose gait is often considered
as ‘‘normal”, and eight senior individuals (five women, three men)
aged 76 to 89 (mean = 81 years) who are potentially more affected
by ‘‘abnormal” modifications of the gait pattern (Gryfe et al., 1977).
Additional information regarding the participants is provided in
Table S1 in the supplementary materials. The study was conducted
in accordance with the Declaration of Helsinki and approved by the
local ethics committee.
Fig. 1. Trajectories extracted with the Kinect and OptiTrack system during a walking se
green stars indicating the local maxima. The pink and blue lines represent the trajectorie
local minima are represented by the pink and blue stars. (For interpretation of the refer
article.)

Table 1
Gait parameters and their method of estimation using the OptiTrack and Kinect system.

Variables OptiTrack

Step length (cm) The distance between the local minima of the left and
Step duration (s) The duration between the local minima of the left and
Cadence (step/s) 1 divided by step duration
Gait speed (cm/s) Sum of the step lengths divided by the sum of step d
The experiment took place in a 6 m � 8 m room equipped with
twelve OptiTrack cameras (Prime 17 W model) and a single Kinect
v2 sensor. The participants wore a suit with 41 reflective markers
for the OptiTrack system and walked perpendicularly to and at a
distance of 4 m from the Kinect sensor. Subjects performed ten
back and forth gait trials at a comfortable speed. At the beginning
of each sequence, participants raised the arm in order for the
experimenter to synchronize the two systems.

Our processing method was only based on the depth images
provided by the Kinect sensor. From the depth information, we
extracted the silhouette of the walker using the background sub-
traction method. The trajectory of the centroid along the vertical
axis was used to calculate the different gait parameters as
described in Dubois and Charpillet (2017). Regarding the OptiTrack
quence. The green line represents the Kinect centroid along the vertical axis, with
s of the right and left heel, respectively, as measured by the OptiTrack system. The
ences to color in this figure legend, the reader is referred to the web version of this

Kinect

right heel The distance between two local maxima
right heel The duration between two local maxima

1 divided by step duration
urations Sum of step lengths divided by the sum of step durations



Fig. 2. Different representations of the gait parameters. (a, d, g and j) Bland and Altman plots with 20 values by subject, corresponding to the 20 walking sequences performed
by each subject. (b, e, h and k) Scatter plots including all data, with the red line indicating the identity line and the blue line corresponding to the linear best-fit. (c, f, i and l)
Boxplots showing the median and variability of the recorded data. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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system, we estimated the parameters using the heel marker
trajectory. Fig. 1 shows an example of vertical trajectory extracted
by the Kinect sensor as well as the trajectory of the OptiTrack
markers. Table 1 shows how and which spatio-temporal gait
parameters were estimated. Supplementary Fig. S2 illustrates
how step length was estimated by each system. The analysis was
performed on steady gait by removing the first step.

Each walking sequence was composed of about 4–6 steps,
depending on the participant. Gait parameters were averaged for
each walking sequence (each forth and each back lap). Ten
sequences were recorded for each participant, for a total of 20 val-
ues for each gait parameter and each motion capture system.

The level of agreement between the Kinect and OptiTrack sys-
tems was assessed using Blan-Altman 95% bias and limits of agree-
ment (LoA), percentage error (PE), Spearmans correlation,
concordance correlation coefficient (CCC), intra-class correlation
(ICC) and linear regression. The Bland-Altman analysis was
adjusted for repeated measurements in a random-effects model
(Carstensen et al., 2008). The PE was calculated by dividing the lim-
its of agreement by the mean of the values obtained with the two
systems (Critchley and Critchley, 1999). A bootstrap-method (with
2000 resamples) using bias corrected and accelerated was used to
estimate the 95% confidence interval of Spearman’s correlation.
The CCC, adjusted for repeated measures (Carrasco et al., 2013),
assessed the precision and deviation of data from the line of iden-
tity. The ICC (Shrout and Fleiss, 1979) was used to assess absolute
agreement. Slope and goodness of fit were computed using linear
regression. In addition, for each spatio-temporal parameter, differ-
ences between age groups were assessed using Kruskal-Wallis
tests (non-parametric data) and associated post hoc tests, all
Bonferroni-corrected for multiple comparisons. The normal distri-
bution of the data was tested using the Shapiro–Wilk test and vari-
ance homogeneity was tested with the Levene test.
3. Results

Table 2 shows the mean difference (bias) and the LoA (mean dif-
ferences �2 SD) between the gait parameters estimated with the
two systems. For temporal parameters, the two systems provided
very similar values (difference of �0:003 s for step duration and
0.000 step/s for cadence). The Kinect system tended to provide
smaller step length (1.95 cm) and gait speed (4.00 cm/s) values.
With 500 measured data points, the LoA ranged from �0:044 to
0.039 for step duration, �0:124 to 0.124 for cadence, �2:10 to
Table 3
Agreement for each parameter as computed with Spearman correlation (95%
confidence intervals), concordance correlation coefficient (CCC) and intra-class
correlation (ICC) analysis.

Spearman (Intervals) CCC ICC

Step length 0.97 (0.96–0.97) 0.92 0.97
Step duration 0.93 (0.90–0.94) 0.94 0.94

Cadence 0.94 (0.92–0.95) 0.94 0.94
Gait speed 0.96 (0.95–0.97) 0.94 0.96

Table 4
Gait parameter statistics: mean (SD) of 500 values (20 by subjects) obtained for the OptiT

Global 23–28

OptiTrack Kinect OptiTrack Kin

Step length (cm) 65.45 (8.25) 63.50 (7.96) 69.12 (6.54) 67.14
Step duration (s) 0.576 (0.060) 0.579 (0.061) 0.588 (0.058) 0.590 (
Cadence (step/s) 1.76 (0.175) 1.76 (0.177) 1.720 (0.167) 1.718 (
Gait speed (cm/s) 114.90 (18.75) 110.90 (17.79) 118.75 (16.05) 114.76
6.01 for step length, and�6:134 to 14.145 for gait speed. Moreover,
as shown in Fig. 2(a), (d), (g) and (j), most points are within the
interval given by the LoA. The 95% confidence interval is not
reported here because the data was not normally distributed.
Finally, the PE was less than 9% for each parameter, indicating an
excellent correspondence between the values provided by the
two systems.

Table 3 shows that all correlation values are above 0.92. Since
the maximum (absolute) value is 1 (perfect correlation), and a
value of 0.70 or higher is considered a strong correlation, our
results indicate a very high level of agreement between the two
systems for all gait parameters. Fig. 2(b), (e), (h) and (k) show
the data recorded with the two systems and a comparison between
the identity line and the linear best-fit. The slope of the regression
line was very close to 1 for all gait parameters, indicating an excel-
lent correspondence (almost one-to-one) between the data pro-
vided by the two systems.

For all four Kinect-extracted gait parameters, the Kruskal-Wallis
test indicated a significant difference between age groups (p <
0.001 for all four tests). Post-hoc comparisons indicated that for
all four parameters, the measured values were significantly differ-
ent between the young and the senior participants (76–89). How-
ever, a significant difference between participants aged 67–73 and
participants aged 76–89 could be observed only for step length and
gait speed, but not for step duration and cadence. The exact same
pattern was observed for OptiTrack-extracted gait parameters.
Table 4 shows that the oldest age group had the smallest step
length and the slowest gait speed.
4. Discussion

Wemeasured a set of gait parameters routinely used in geriatric
screening to assess fall risk. These parameters were extracted using
two motion capture systems: the inexpensive, easy to set up, quick
to master, and portable Kinect sensor, and the much more expen-
sive and much less convenient to use Optitrack system, which is
used in some clinics and is considered a reference system. Using
six different methods of comparison, we showed a very high level
of agreement between the parameters extracted by the two sys-
tems. Our study encompassed a large range of ages, with people
aged 23 to 89 years old. Yet, we showed that the Kinect sensor cou-
pled to our algorithm can successfully extract spatio-temporal gait
parameters with the same accuracy for all age groups. This is an
important result because in the literature, few studies attempted
to automatically measure gait parameters with elderly people.
And these few studies were usually performed with elderly people
affected by health disabilities (Galna et al., 2014).

Below, we compare the results obtained in the current study
with those previously reported in the literature. Dubois and
Charpillet (2017) compared the gait parameters extracted with a
Kinect v1 to those measured with an actimetric carpet. Their study
was performed with young individuals, and they extracted the
same gait parameters as in the current study, using the same algo-
rithm. However, step durations measured in the current study
were more accurate, with a difference of only 0.003 s between
rack and Kinect system.

67–73 76–89

ect OptiTrack Kinect OptiTrack Kinect

(6.37) 66.78 (5.63) 64.86 (5.41) 60.06 (9.80) 58.09 (9.23)
0.058) 0.548 (0.046) 0.550 (0.047) 0.600 (0.062) 0.604 (0.064)
0.165) 1.842 (0.151) 1.844 (0.155) 1.686 (0.167) 1.686 (0.171)
(14.80) 122.66 (14.79) 118.79 (14.54) 101.10 (18.36) 96.93 (16.18)
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the two systems against a 0.03 s difference in the Dubois and
Charpillet (2017) study. This improvement may be explained by
the hardware evolution of the Kinect sensor. In particular, the
Kinect v2 is known to be more accurate than the v1 for depth mea-
surements (Gonzalez-Jorge et al., 2015; Wasenmüller and Stricker,
2016).

If we now focus more specifically on gait parameters, the agree-
ment levels obtained in our study for gait speed (0.94–0.96) are in
line with those reported in the literature, namely 0.90–0.99
depending on the method used (ICC, Pearson or CCC) (Clark et al.,
2013; Geerse et al., 2015; Mentiplay et al., 2015). Similarly, for step
length, values ranging from 0.92 to 0.97 correspond well to the
0.80 to 0.99 range usually reported (Clark et al., 2013; Geerse
et al., 2015; Mentiplay et al., 2015; Motiian et al., 2015). Regarding
step time, we observed values ranging from 0.93 to 0.94, which lies
in the upper end of the ‘‘usual” range because the agreement val-
ues usually reported are in the 0.77 to 0.92 range (Clark et al.,
2013; Geerse et al., 2015; Mentiplay et al., 2015; Xu et al., 2015;
Motiian et al., 2015). If we look at the limits of agreement, the val-
ues we found for step length (�2:10 to 6.01) and gait speed
(�6:134 to 14.145) were relatively high. However, Motiian et al.
(2015) observed still higher limits both for step length (�8:167
to 5.079 for left step and �10:656 to 6.441 for right step) and gait
speed (�15:966 to 13.413). In contrast, Geerse et al. (2015)
observed more narrow limits of agreement, namely values ranging
from�1:4 to 1.2 for step length and from 0.1 to 2.1 for gait speed. It
is important to note that in most studies, the limits of agreement
are given as the average of all sequences for any given participant
(one value per participant). Accordingly, one can expect relatively
narrow limits of agreement. When applying the same method
and averaging all sequences by participant, we also obtained more
narrow limits of agreement, namely a bias of 1.96, �0:003;�0:000,
4.01 with limits of 0.84 to 3.08, �0:016 to 0.010, �0:038 to 0.037,
0.18 to 7.83 for step length, step duration, cadence and gait speed,
respectively. Although the limits of agreement we measured are
fairly larger than those reported in the literature, the reverse ten-
dency was observed for PE. Indeed, the PE was smaller in our study
(6.28% for step length, 7.17% for step duration, 7.05% for cadence
and 8.96% for gait speed). For example, in Motiian et al. (2015),
PE was 21% for step length, 12.8% for gait speed and 15% for step
duration. In Clark et al. (2013), the PE were similar to ours for gait
speed (8%) and step length (5%) but larger for step duration (19%).
Overall, and in view of these results, we are confident that our
Kinect-based method can be used to reliably extract gait
parameters.

In the geriatric literature, step length, step duration, cadence
and gait speed are acknowledged as highly relevant to assess fall
risks. Here, we showed that these four parameters can successfully
be extracted with our Kinect-based system to discriminate young
people from older individuals, who are at higher risk of fall
(World Health Organization, 2008; Gryfe et al., 1977; Lord et al.,
2001). Importantly, our system also allowed us to discriminate
two groups of elderly people, namely individuals aged 67–73 vs
76–89. The two parameters underlying this latter discrimination
were step length and gait speed, which are therefore the most aus-
picious parameters for assessing fall risk using our system. Future
studies will focus on identified fallers having distinct clinically-
determined risks of fall.

Using a simple representation of the walking individual, namely
the geometric center, we were able to extract the most relevant
gait parameters as accurately as with a more ‘‘complex”
skeleton-based method. We also showed that these parameters
can be accurately extracted over a wide range of age categories.
We believe that in addition to being easier to use, non skeletal-
based approaches such as ours are also less susceptible to visual
occlusions and therefore more robust than commercially available
skeleton-based methods (marker-based motion capture and
Microsoft Kinect SDK). In that respect, our approach is more flexi-
ble, in that it can be used in a larger range of situations. Therefore,
this system would be an excellent automatic alternative or com-
plement to the clinical tests currently performed by healthcare
professionals to assess fall risk in the elderly.
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