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Abstract

Purpose: The purpose of this study is to validate a new technique in radiotherapy,
the medical physicist needs to evaluate the dosimetric benefit and the risk of
toxicity before integrating it in the clinical use. Methods: We validate a sound
decision tool based on bootstrap method to help the radio oncologist and the
medical physicist to usefully analyze the dosimetric data obtained from small-sized
samples, with few patients. Statistical investigation principles are presented in the
framework of a clinical example based on 36 patients with 6 different cancer sites
treated with radiotherapy. For each patient, two treatment plans were generated.
In plan 1, the dose was calculated using Modified Batho's (MB) density correction
method integrated with pencil beam convolution (PBC) as type (a) algorithm. In
plan 2, the dose was calculated using Anisotropic Analytical Algorithm (AAA) as
type (b) algorithm. The delivered doses in monitor units (MUs) were compared
using the two plans. Then, the bootstrap method was applied to the original data
set to assess the dose differences and evaluate the impact of sample size on the
95% confidence interval (95%.CI). Shapiro-Wilks and Wilcoxon signed-rank tests
were used to assess the normality of the data and determine the p-value. In
addition, Spearman’s rank test was used to calculate the correlation coefficient
between the doses calculated with both algorithms. Results: A significant
difference was observed between AAA and MB for all tested radiation sites.
Spearman’s test indicated a good correlation between the doses calculated with
both methods. The bootstrap simulation with 1000 random samplings can be used
for small populations with n = 10 and provides a true estimation. Conclusion: one
must be cautious when implementing this method for radiotherapy: the data
should be representative of the real variations of the cases and the cases should be
as homogeneous as possible to avoid bias of over/under estimation of the results.
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1. Introduction

The main challenge in radiation therapy is to obtain the
highest probability of tumor control or cure with the
least amount of morbidity and toxicity to normal
surrounding tissues. Currently, numerous different
machines and techniques are used to irradiate the

tumors either by photons or by protons as
three-dimensional radiation therapy (3DRT),
intensity-modulated  radiation  therapy  (IMRT),

tomotherapy and volumetric-modulated arc therapy, etc.
On the other hand, the advance in technology provides

successive generations of Treatment Planning Systems
(TPS), which include more accurate dose calculation
algorithms. The new advanced techniques allowed
optimizing the accuracy, the security and the clinical
outcome of treatments. However, implementing the
advanced techniques in photon or proton radiotherapy
needs two steps. The first step: the medical physicists
must assess the installation of the equipment using
national and international recommendations and
assurance quality protocols. The second step is to check
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the dosimetric outcome of the treatment with a small
group of patients “n”. If the step 2 is ignored, the
expected clinical outcome could be endangered.
Therefore, the physicists should provide the radiation
oncologist, a tool allowing him to assess any significant
alteration of the outcome and to estimate the
prescription modifications associated with the
implementation of the new treatment procedure.
Moreover, the validation of a decision tool is an
important component of quality assurance for
radiotherapy. Practically, the assessment of benefit /
risk of a new technology in a radiotherapy department
based on a small number of patients without too much
time and costs investment would be welcomed. In this
study, we promote the use of bootstrap simulation using
small sample sizes to simulate a larger population and
adequately estimate the dosimetric alterations between
two different methods of treatment planning.1? A rather
simple example was carried out using monitor units
(MUs) comparison to illustrate and validate the method
to help clinicians to make a decision based on statistical
analysis of the differences. Consequently, the example
presented here does not aim at evaluating the new
treatment itself or estimating a benefit / risk balance,
since treatment plan quality assessment is based on
dose distribution in target and organs at risks as well as
dose homogeneity. The simulation is done using 1000
random samplings derived from an original small group
of patients n = 6. We present a step-by-step procedure
for the bootstrap simulations. The procedure is
presented using real data based on two generation of
dose calculation algorithms. Finally, we discuss the
question of whether the medical decision in radiation
oncology can be taken based on so few patients.
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2. Methods and Materials

2.1. Clinical cases and data

This study is based on 36 patients including 6 cancer
sites. These cases were chosen to cover the full range of
the different types of cancer radiotherapy, namely: lung,
breast, spine, head & neck, brain and pelvis. Table 1
shows the site locations, the target volume in cm?, the
prescribed dose and the number of beams (m;). For each
patient, two treatment plans were generated using
exactly the same beam configuration. In plan 1, the dose
was calculated using the Modified Batho's (MB) density
correction method in combination with Pencil Beam
Convolution algorithm. In plan 2, the dose was
calculated using Anisotropic Analytical Algorithm (AAA).
Both algorithms were integrated in Eclipse® TPS (Varian
Medical Systems, Palo Alto, CA).38 For patients treated
with 3DRT, the dose in plans 1 and 2 were optimized to
protect the healthy organs using respectively static filter
with MB and Enhanced Dynamic Wedge (EDW) with
AAA. For patients treated with IMRT, the multi leaf
collimators were used in plans 1 and 2 to protect the
organs at risks. The calculated dose in MUs for each plan
was used to illustrate and validate the bootstrap
simulation method with real data.

2.2. Medical decision procedures

The implementation and validation of the bootstrap
simulation consists of 4 successive steps including the
assessment of dose difference, estimating 95%.CI with
bootstrap simulation, evaluate the fluctuation of CI and
finally estimate the minimal number of cases to validate
a significant difference, as shown in Figure 1.

Table 1: Report of tumor sites, the target volume in cm3, the prescribed dose, n and mj present respectively the number of
patients and beams that were used for each case.

Cancer sites Target volume Prescribed dose [Gy] Techniques Beam number

n=6 [cm3] average * SD m;
average * SD

Lung 394+ 194 58.8 [50.8 - 66] 3DRT 34
Breast 1059 + 248 47.2 [40 - 50.6] 3DRT 38
Spine 465.4 +221.6 10 [8 - 20] 3DRT 19

Head & neck 228.2+1359 56.9 [44.0 - 69.9] IMRT 34
Brain 318.2+339.1 57 [54 - 66] IMRT 30
Pelvis 276.7 +249.3 65.3 [52.7 - 76] IMRT 42
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Figure 1: Comprehensive medical decision procedures based on bootstrap simulation to evaluate a difference between two
treatment plans and make a decision when differences are significant.

2.3. Assessment of dose difference and statistical
analysis

Initially, the dose difference (ADose) in % was calculated
between plan 1 and plan 2 using the following formula:

ADose % = (Daaa - Dms) x 100/Daaa (1)

Then the 95% Confidence Interval (95%.CI) was

calculated for each cancer sites with sample size n = 6

patients:
Cl=p+196xo0 (2)

Where: p is the average deviation and o is standard

deviations

The factor 1.96 was used assuming that the data are
normally distributed. Shapiro-Wilks test was used to
check the normality of the data from dose difference and
computing the statistic value (W) and p-value. Thus, p <
0.05 means that the data are not normally distributed
and that the null hypothesis HO can be rejected; and p >
0.05 means that the data are normally distributed and
that the null hypothesis HO cannot be rejected. In
addition, the correlation between the doses calculated
by the two algorithms was assessed using Spearman’s
rank test.%10
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2.4. Data expansion to estimate the 95%
confidence interval (95%.CI)

the bootstrap method uses randomly chosen samples,
iteratively drawn with replacement from the original
data set, i.e,, each value can be drawn several times in
the same sample.! The basic idea is to artificially expand
the sampling from a limited body of data in order to
increase the available information and to make a better
estimate of the statistical parameters of the represented
population, for instance a 95% confidence interval of a
given parameter, as shown in Figure 2. In this study, the
CI was firstly evaluated using equation 1. Then the raw
95%.CI was simulated for each cancer site by varying the
beam number from a minimum of 5 to mj. For every
sample size, m, 1000 random bootstrapped samples
were drawn. Specifically, for the first round, m = 5
beams were selected from the data we wanted to
compare. Then for the second round, m = 6 beams were
selected, and so on up to m;.

2.5. Analysis of 95%.CI residual fluctuations

The purpose is to assess if the 95%.CI obtained at the
end the first step remains "stable" for any additional
round of bootstrap for n+1 to n+j, as shown in Figures 1
and 2. In fact, one can expect a small variability of the
results, when new data are introduced, due to the
variability of physical characteristics and anatomy of
each patient. The impact has to be integrated in the
results in order to readjust or to constrain the CI if the
observed results with the new case alter the original CI.
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Figure 2: Principle of bootstrap simulation with successive rounds of data expansion according to the increase number of

drawn data in the sampling from m = 5 to m;.

2.6. Estimate the minimal number of cases to
validate a significant difference

After having collected the data and computed their
95%.CI, we wanted to know what could be the smallest
number of cases to compute to demonstrate a significant
difference. Obviously, there is no way to guess that
before having a certain number of cases. Nevertheless,
when having the n cases one can assess and evaluate the
p-value. To solve this, we propose the following
approach. For every m, the mean p-value across the
1000 random samples was computed using Wilcoxon
signed-rank test. Then the p-values as function of each
sample size was plotted to show the minimum sample
size needed to have a significant difference.

3. Results

3.1. Assessment of dose difference

Table 2 summarizes the dosimetric and statistical
results for MUs for each cancer site. This shows clearly
that for lung, breast and spine, the MUs calculated with
AAA method with EDG was lower than that calculated
with MB method. The results of the Wilcoxon test
showed that there was a significant difference between
plan 1 with MB and plan 2 with AAA for all site apart
from brain. The significant difference for MUs is due to
the change of filter type when using AAA with EDW. The
data showed a strong correlation between the two
methods with r > 0.85 for all sites. Table 3 presents the
results of the Shapiro-Wilk test, as well as skewness for
dose difference. The Shapiro-Wilk test shows a
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significant deviation from normality. Figure 3 shows the
observed dose difference compared with expected data
for normal distribution using Shapiro-Wilk test. Visual
inspection of Figure 3 confirms the results presented in
Table 3.

3.2. Bootstrap simulations

3.2.1. Estimate the confidence interval

Table 4 shows the statistical results for each cancer site
with n = 6 patients using bootstrap of 1000 replicates,
simulated by varying sample size from m = 5 to mj.
Figure 4 shows bootstrap distributions of dose
difference based on 1000 replications, for sample sizes
of m =5, 10, 15, 20 and 38 for breast cancer. It is clear
that using higher sample sizes data distribution is closer
to normality.

3.2.2. Fluctuation of confidence interval

Table 5 shows the statistical results for each cancer site
with the n = 5 and n = 6 using bootstrap of 1000
replicates. Figure 5 shows bootstrap distributions of
dose difference and cumulated average difference based
on 1000 replications, for n = 5 patients compared to n =
6 patients for lung cancer. It can be seen that the average
difference at probability of 50 % was -18 % usingn = 5
or n = 6. However, the lower and upper confidence
interval was changed. The red-circled landmarks in
Figure 6 indicate the fluctuation interval presenting
lower and upper limits of dose difference.
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3.2.3. P-values

We observed a significant difference between MB and
AAA for all cancer sites with p < 0.05, a part from brain.
Figure 6 shows the computed mean p-values for each
sample size for all cancer sites. It can be seen that with
m close to 10 beams, we can observe a significant
difference between MB and AAA for lung and spine.
However, with m > 25 we can also observe a significant
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difference for head & neck and pelvis, but we cannot
conclude that there is a significant difference for brain
even with m = 30. This is due to the lower dose
difference, which was < 2%. The results obtained from
Figure 6 with bootstrap simulation confirm the observed

results in table 2.

Table 2: The dosimetric and statistical results for AMUs for each cancer site.

Cancer sites AMUs 95%.CI r-value p-value
pto Equation 2
Lung -21.3£20.7 [-61.8;19.3] 0.90 <0.001
Breast -11.5 +£33.2 [-59.1; 36.0] 0.92 0.002
Spine -22.6 £36.0 [-87.7 ; 42.5] 0.85 0.003
Head & neck 2.0+15.0 [-27.8;31.8] 0.96 0.01
Brain -0.2+0.7 [-1.7;1.2] 0.99 0.3
Pelvis 0.84+15 [-2.1;3.7] 0.99 0.001

Table 3: The results of the Shapiro-Wilk test, as well as skewness for dose difference. No means that the data are not normal

distributions.

Cancer sites W-statistic p-value Normality Skewness
Lung 0.9 0.01 No -0.6
Breast 0.6 <0.001 No -2.2
Spine 0.7 <0.001 No -1.1
Head & neck 0.8 <0.001 No 0.3
Brain 0.9 0.004 No -1.0
Pelvis 0.9 No 0.3
Lung 0.9 No -0.6

Table 4: The statistical results of confidence intervals for each cancer site. The data were derived from 6 patients and
bootstrap of 1000 replicates simulated by varying sample size from m = 5 to m;.

Cancer sites 95%.CI 95%.CI 95%.CI 95%.CI 95%.CI
m=>5 m=10 m=15 m =20 m = mj
Lung -39.7;-4.3 -34.3;-85 -31.1;-11.3 -30.5;-12.3 -28.0;-14.7
Breast -30.9;9.3 -25.9;2.7 -23.2;0.7 -21.7;-9.3 -18.9;-3.6
Spine -51.4;5.9 -43.2;-1.9 -39.6;-6.3 NA -37.3;-8.2
Head & neck -10.7 ; 15.7 -6.8;11.2 -5.5;9.5 -4.9;89 -2.8;6.8
Brain -9.2;04 -0.7;0.2 -0.6;0.1 -0.6; 0.06 -0.5;0.01
Pelvis -0.5;2.1 -0.1;1.2 0.06;1.6 0.2;1.5 04;13
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Figure 3: Representation of the observed dose differences compared with expected z-score obtained according to the normal
distribution using Shapiro-Wilk test.
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Figure 4: Bootstrap distributions of dose difference based on 1000 replications, for sample sizes of m =5, 10, 15, 20 and 38

for breast cancer.

Table 5: The statistical results of 95% confidence intervals for each cancer site. The data were derived with bootstrap of
1000 replicates from n =5 and n = 6 patients.

Cancer sites 95%.CI 95%.CI
n=>5 n==6

Lung -30.1;-13.6 -28.0; -14.7
Breast -22.2;-4.7 -18.9;-3.6
Spine -39.1;-5.2 -37.3;-8.2

Head & neck -3.6;8.7 -2.8;6.8
Brain -0.5;0.05 -0.5;0.01
Pelvis 0.4;3.3 04;1.3
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Figure 5: Bootstrap distributions of dose difference based on 1000 replications, for n = 5 compared to n = 6 patients for lung
cancer. The red-circled landmarks indicate the fluctuation interval presenting lower and upper limits of dose difference.

4. Discussion

The bootstrap is a computer-based method proposed by
Efron et al, 1993 to simulate the sample distribution
around a meaningful statistic value (e.g., mean, median,
variance, correlation coefficient) by generating multiple
random samples with replacement.2 Recently, this
method was implemented in radiation oncology to
estimate toxicity, setup errors, organs motions or cost,
etc.113 In this study, bootstrap simulation was used
with two aims; i) to estimate the 95%.CI for small
sample size; ii) to estimate the minimum sample size
that would have been necessary to observe a significant
difference between two algorithms MB and AAA. It is
obvious that the use of EDW filter with AAA calculation
for lung, breast and spine with 3DRT had a significant
impact on MUs when using the same beam configuration
with another filter and a different calculation algorithm.
Nevertheless, this is presently used just as an example to
generate a set of differential data to demonstrate a
statistical procedure to support a medical decision.
However, in routine activity rather large differences are
naturally observed depending on cancer site, anatomy
and beam orientations.

© Chaikh et al.

4.1. Relationship between data normality and
95%.CI

Regarding normality test, we observed that the data
were non-normally distributed for all cancer sites. Thus,
the 95%.CI based on equation 1, assuming a normal
distribution, was overestimated for all cancer sites, as
shown in Table 2. However, when simulating the data
with a random sample of 1000 observations, the
distribution mean appears to be smaller compared to
the original estimation with n = 6, as is the estimated
95%.CI. This is due to the fact that the original body of
data was too small to have a normal distribution. This
explains why the 95%.CI values presented in Table 2 do
not estimate the true interval limits of dose differences.
Therefore, the bootstrap simulation allows for
quantifying the difference using 1000 random samples,
while avoiding the observed over/underestimation of
dose difference. Before estimating the 95%.CI, one
should test whether the data are normally distributed to
avoid the wrong conclusion. For example, assuming a
normal distribution for data, as shown in Table 2, the
95%.CI for lung, breast and spine spans zero. One could
therefore conclude that there is no significant difference.
However, using normality test the p-value is < 0.05
demonstrating that data are not normally distributed.
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4.2. Validation of bootstrap simulation method

We observed significant differences between MB and
AAA for lung and spine. To assess whether bootstrap
simulation allows for predicting significant differences
for small sample size, a simulation was performed to
calculate p-value as a function of sample size. The mean
p-value calculated with 1000 random samples confirm
the observed results, as shown in Figure 7. It also can be
seen from Tables 4 and 5 that for n = 5 or n = 6, the
95%.CI values were closer to the “true” CI based on all
fields m; for each cancer site. Thus, the results deriving
from 1000 random provide evidence that the simulation
estimates a valid 95%.CI.

The use of bootstrap method can prevent the over or
under estimation of 95% CI as mentioned above. The
comparison of 95%.Cl estimated from m = 5 to m;
showed a considerable difference, as expected, due to
the anatomical variability between patients, especially
for lung, breast and spine cancer sites.

The results from this study confirm that a careful
analysis should be taken when using bootstrap
simulation in radiotherapy especially for large tissue
heterogeneity like for lung and breast. The chest cancer
provides heterogeneous data due to variation of lung
density from patient to patient. The realistic example
taken in this study, which is based on the integration of
more advanced algorithm AAA than the former
algorithm MB, shows the complexity and the real
difficulty when integrating advanced technology in
radiotherapy. On the other hand, this also shows that the
physicists and radiation oncologists should be cautious
when integrating new technologies. However, the
internal validation of estimated 95%.CI could detect the
erroneous predictions of dose difference between both
algorithms. This is a very important step that
demonstrates the advantage of bootstrap simulation to
cumulate the observed results and readjust the CI. This
means that the use of new data derived from new
patients, not included in the initial set of data, are able to
probe the obtained CI, to check this result and to feed a
new cycle of calculation of CI to more accurately predict
dosimetric metrics in radiotherapy.

4.3. Assessing the radiotherapy outcomes using
bootstrap analysis

The bootstrap simulation method can be used to provide
a statistical analysis of the uncertainty in the estimated
dose response relation.' 14 More recently Chaikh, et al
2016, proposed the use of bootstrap simulation to
estimate the correlation between normal tissue
complication probability (NTCP) and physical lung
density. They showed that the bootstrap simulation with
1000 random samplings may have under/overestimate
the correlation using small data from dose volume
histograms (DVH). However, bootstrap simulation can
be used to re-estimate the value of radiobiological
parameters  setting  “clinical data” for each

© Chaikh et al.
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radiobiological model, such as Lyman-Kutcher and
Burman (LKB), equivalent uniform dose (EUD), etc. The
more recent study showed that the initial radiobiological
parameters can introduce a considerable over or under
estimation to NTCP or tumor control probability (TCP)
using the advanced algorithm models, such as AAA and
Acuros XB (AXB) modes: dose-to-water or
dose-to-medium. In addition, a shift for the
radiobiological parameters has been proposed.’> The
new radiobiological parameters with uncertainties can
be evaluated and presented as a 95%.CI using bootstrap
simulation method. In this case, the data as input
includes DVH and initial radiobiological parameters for
NTCP and TCP, as shown in Figure 7.

4.4. Advantage and limits of bootstrap simulation
in radiotherapy

The challenge is the small number of patient (n = 10)
available to produce robust 95%.CI able to sustain a
decision. The bootstrap procedure provides a solution
for this. By enlarging the number of data, one can see
that the limits of the CI are altered as shown in table 4.
When the zero is excluded of the 95% CI, one can
conclude that a significant difference exists, thus making
possible truly motivated medical decision. According to
the type of data and the clinical situation, the possibility
to reach a significant difference will need different
number of cases as shown by the decreasing of p-value
according to the case number as shown by Figure 6. This
number is rather small when differences are large as for
lung and conclusion can be drawn with a small number
of cases. Of course, it is the contrary for small difference
as for pelvis and p < 0.05 is even not reached when
probably no differences are existing as for brain. The
bootstrap simulation has certain advantages and limits.
First, this method can be used for small sample size.
Moreover, using a large sample size, the bootstrap
method should provide an even better estimation.
Second, this method can be rapidly used in radiotherapy.
If the simulation is properly implemented, it provides
more accurate statistical values and estimates all
dosimetric parameters with small cohorts of patients.
Third, the simulation is fast and needs a minimum of
assumptions and there are no major requirements.
Fourth, the bootstrap can be used for parametric and
non-parametric tests. Fifth, it can be wused
retrospectively to estimate the needed sample size to
observe a significant difference, as presented in this
study. However, one of the disadvantages of this method
is that if the data does not represent the real
observations, it will over/under estimate the results. In
this case, one solution that was proposed in this study is
to cumulate the data and readjust the confidence
interval. However, a sample size larger than 10 is
needed to provide a good estimation, especially if the
data are heterogeneous and not normally distributed.
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Figure 7: Estimation of clinical data for radiobiological models using bootstrap simulation method.

5. Conclusion

In this study, we illustrate a bootstrap analysis to
estimate the 95%.CI for dose difference from paired
observations. To use this method in radiotherapy, an
example was used by comparing the delivered dose in
MUs calculated with two dose calculation algorithms MB
as type (a) and AAA as type (b). The bootstrap
simulation can be used to generate big data from small
number of DVH, since to validate a radiobiological model
predicting tumor control and toxicity, one need a big
data and too much time. Using this method, one is able
to simulate the statistical values as mean, variance,
correlation, confidence interval, etc, with 95%
confidence.
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